

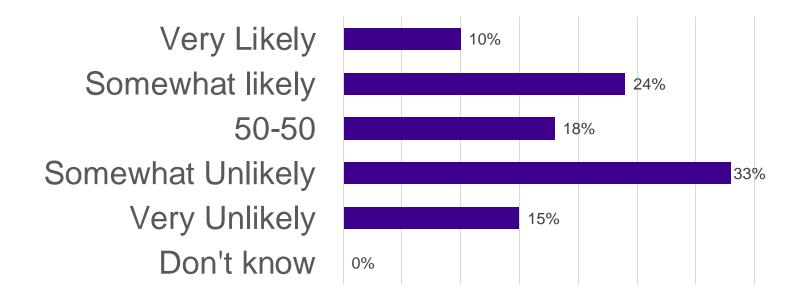
THE RISK OF LIVING LONGER

Thank you for joining us – the webinar will start shortly

Douglas and Uli ask the ultimate question of human longevity for financial institutions:

How long can we go?

Series program


Session 1 April 16 th , 2024	An introduction to the question of human longevity: how long can we go?	•	Dan Ryan, Just Group Phil Newman, Longevity.technology	Today!
Session 2 May 7 th , 2024	The biology of aging	•	Richard Faragher, University of Brighton	Register here
Session 3 May 28 th , 2024	Cancerresearch	•	Xiao Gao, SCOR Catherine Pickworth, Cancer Research UK	Register here
Session 4 June 18 th , 2024	Biological clocks	•	Peter Joshi, Humanity Inc	Register here
Session 5 July 9 th , 2024	Using AI to improve and advance healthcare	•	tbc	Register here

For full details and registration for the series,

visit: <u>www.clubvita.net/us/events</u> or follow <u>in http://linkedin.com/company/club-vita</u>

Poll question

"How likely is it that annual mortality improvements will increase materially above the levels we saw in the c100 years up to 2019 in the next 20-30 years?"

An introduction to the question of human longevity: *How long can we go?*

Chair)
Founder & Chief
Visionary Officer,
Club Vita

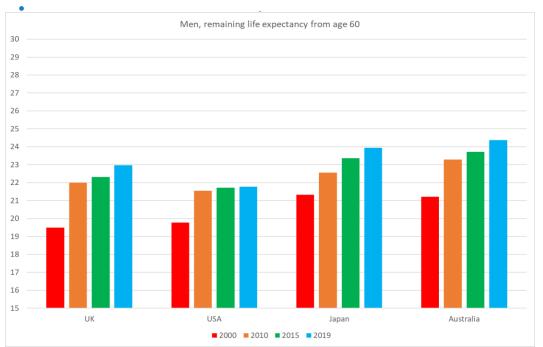
Ulrich Stengele
(Chair)
Chief Actuary,
Nationwide Financial

Dan Ryan

Director of

Demographic Risk,

Just Group



Phil Newman

CEO & Founder, Longevity. Technology

Looking back at historical pace of mortality improvements

Men – Annual increase in life expectancy from age 60						
	2000-2010	2010-2015	2015-2019			
UK	0.25	0.06	0.16			
USA	0.18	0.04	0.02			
Japan	0.12	0.16	0.15			
Australia	0.21	0.09	0.16			

Women, total life expectancy from age 60

29

28

27

26

29

21

20

19

18

17

16

15

UK

USA

Japan

Australia

770111611 7	middi moredae m	Time expediancy	nom age oo
	2000-2010	2010-2015	2015-2019
UK	0.17	0.01	0.15
USA	0.14	0.03	0.00
Japan	0.11	0.09	0.11
Australia	0.13	0.03	0.14

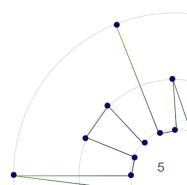
Women – Annual increase in life expectancy from age 60

Source: Global Health Observatory

How actuaries have attempted to predict the future

Extrapolative

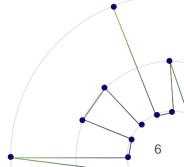
- Forecast using time series extrapolation
- Strong <u>probabilistic</u> framework, but relies on past data


Expectation

- Forecasts / scenarios based on expert opinion
- Simple, not limited to past data, but subjective and <u>deterministic</u>

Explanative

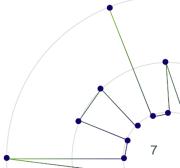
- Understand the past and use it to model the future
- Base on structural or causal epidemiological models



Pre-pandemic predictions produced by GBD (central)

Chart redacted for copyright.

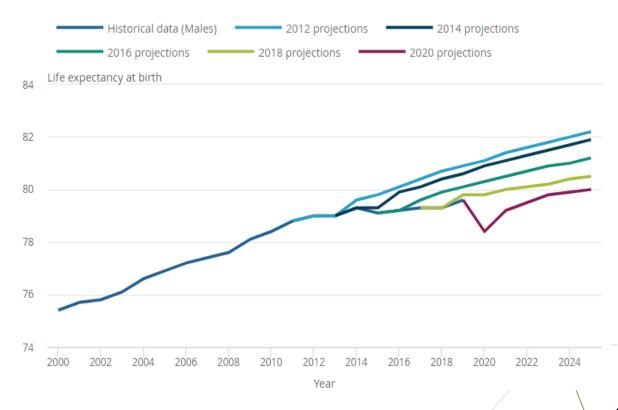
• Chart available on p2079 of Forecasting life expectancy, years of life lost, and all cause and cause-specific mortality



Pre-pandemic predictions produced by GBD (optimistic)

Chart redacted for copyright.

• Chart available on p2079 of Forecasting life expectancy, years of life lost, and all cause and cause-specific mortality



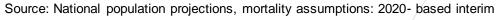
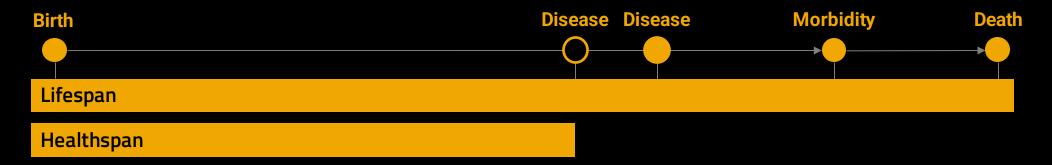
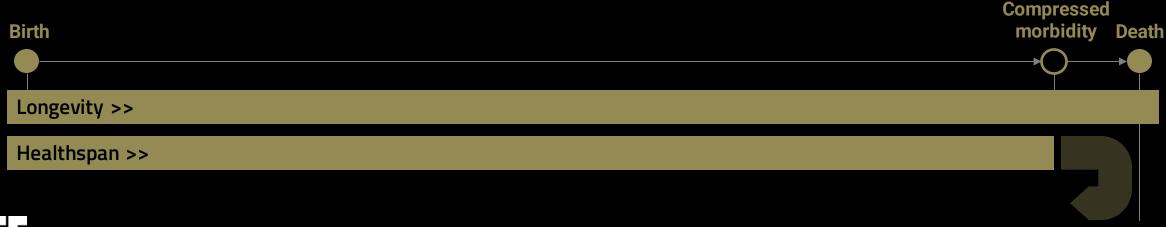

Decades of challenging predictions - back to the drawing board?

Chart redacted for copyright.

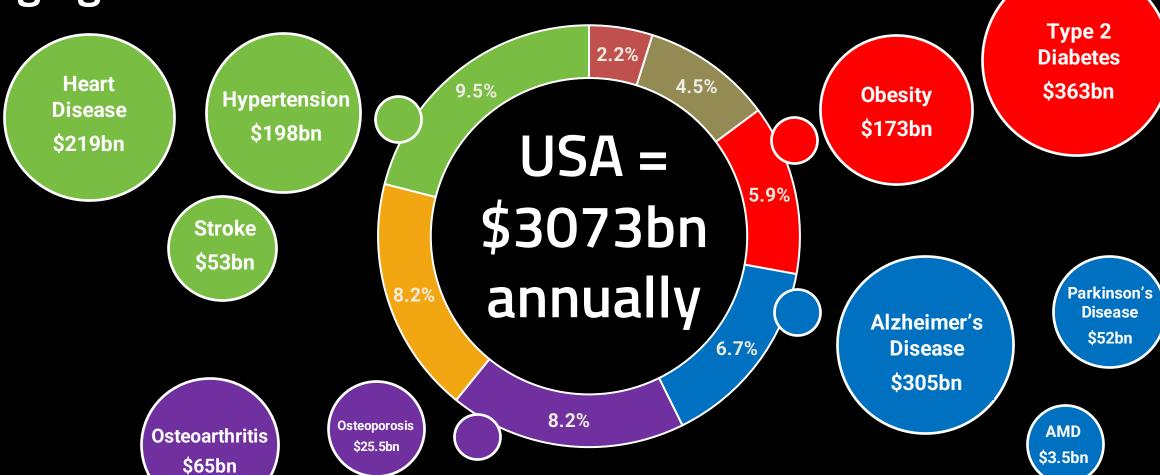
 Chart available on p13 of the <u>ONS's National</u> <u>Population Projections Accuracy Report, 2016</u>

Successive projections of period life expectancy at birth, males: UK 2012-based to 2020-based





What is longevity?

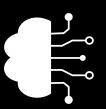

Early detection and intervention targeting the pathways and diseases of aging ...

... leading to extended healthspans, longer and more productive lives:

Defining longevity: Domains

Senotherapeutics

Longevity supplements


Young blood

Longevity diagnostics

Aging in place

Neurotech

Longevity immunity

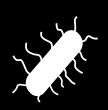
Discovery platforms

Rejuvenation

Regeneration

Cellular Reprogramming

Metabolic rejuvenation


Companion longevity

Advanced aesthetics

Repurposed drugs

Microbiome

Longevity genetics

Longevity platforms

Longevity lifestyle

Longevity clinics

Longevity drugs

Functional food

Education

Neuropharma

Reproductiv longevity

Defining longevity: Domains: Longevity Biotech

Senotherapeutics

Regeneration

Cellular Reprogramming

Longevity drugs

Longevity immunity

Discovery platforms

Rejuvenation

Repurposed drugs

Microbiome

Longevity genetics

Neuropharma

Is it here already?

Longevity <u>now</u>

Digital apps

Clinical services

Biomarkers

CROs

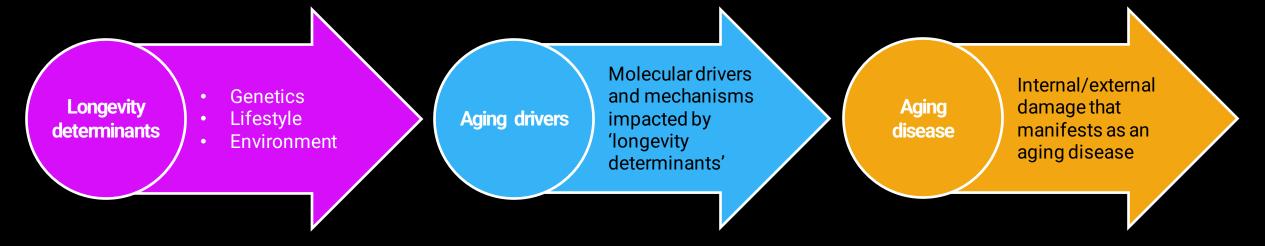
Supplements

+ others

Longevity <u>next</u>

Drug discovery

Repurposing


Reprogramming

Supplements

Gene therapies

+ others

Defining longevity: 3 Targets

Aging pathways, mechanisms and hallmarks							
Epigenetics	Mitochondrial dysfunction	Immuno-modulation	IGF-1	Nf-Kb	Nrf3		
DNA repair	Progeronic chronokines	Reproduction	Insulin	IL-1B	PAI		
Telomere regulation	Oxidative stress	Glycation	mTOR	P53	Wnt		
Proteostasis	Stem cell exhaustion	Defective autophagy	FOXO	Ang-II	SIRTs		
Nutrient sensing	Cellular senescence	Androgenic signalling	AMPK	AKT	NAD		
Macromolecular damage	Dysregulated microbiome						

Renewa

Data

Treatment

Defining longevity: 4 pillars

Every company in the longevity industry is based around these three targets and aim to modulate the trajectory by prevention, diagnostic, renewal, or treatment.

Longevity determinants

- Genetics
- Lifestyle
- Environment

Prevention

Aging drivers

Molecular drivers and mechanisms impacted by 'longevity determinants'

Aging

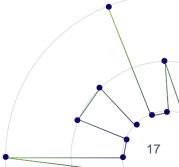
Internal/external damage that manifests as an aging disease

Diagnostic

Example applied to CVD

Prevention	Diagnostics	Renewal	Treatment	
Prevent damage that accelerates aging and modify longevity determinants and aging drivers. Early identification of health status and accumulation of aging damage. Diagnostics span across longevity determinants, aging drivers and at the point of aging disease.		Reversal of damage that has occurred. This includes either accumulated damage before disease has arisen, damage arising from aging drivers, or that which occurs at the point of disease.	Treatment of damage that has occurred. This means direct treatment of an aging disease.	
Prescription medications	ECG, EGG	Pacemaker, lipid-lowering agents	Angioplasty/stents, bypass surgery	
Exercise, Mediterranean diet, longevity supplements	Epigenetic clock to predict CVH (BASE-II)	Treatment of atherosclerosis-related risk (by removal of arterial plaque)	Heart repair by cardiac reprogramming	

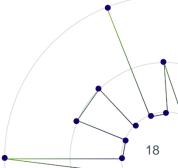
Current approach


Longevity approach

Smoking – putting behavioural change in the limelight

Charts redacted for copyright.

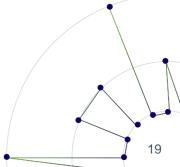
• Charts available on p5 of the 50 years of follow-up on British Doctor Study



Potential for healthy lifestyles to increase life expectancy

Chart redacted for copyright.

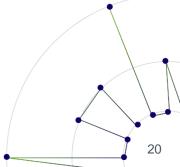
• Chart available on p14 of the <u>Impact of Healthy Lifestyle Factors on Life Expectancies in the US population</u>



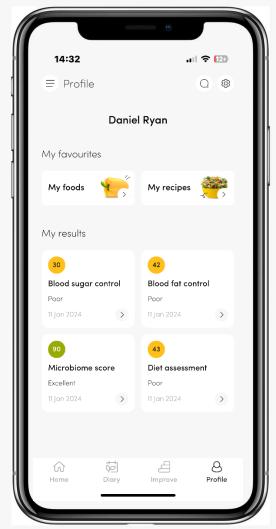
Potential for healthy lifestyles to increase life expectancy

Chart redacted for copyright.

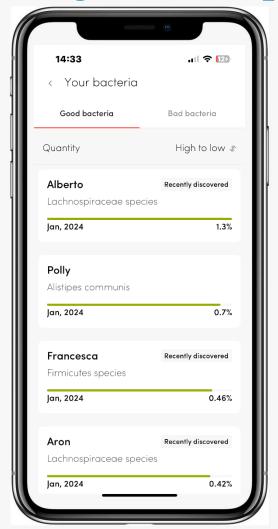
• Chart available on p14 of the <u>Impact of Healthy Lifestyle Factors on Life Expectancies in the US population</u>

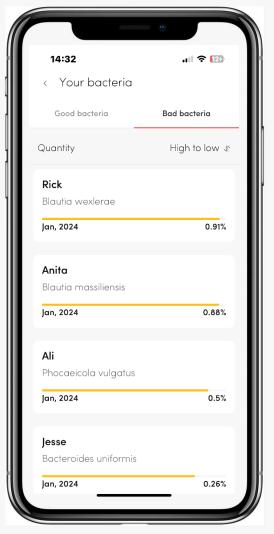


Potential for healthy lifestyles to increase life expectancy

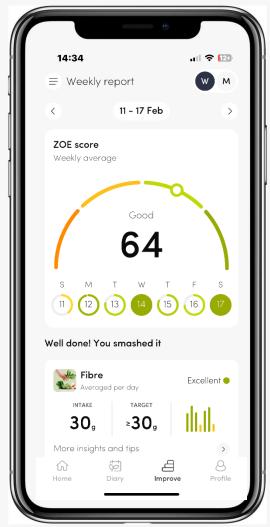

Chart redacted for copyright.

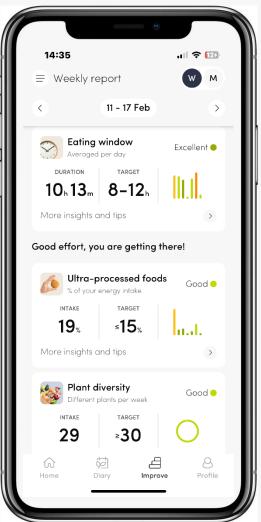

• Chart available on p14 of the <u>Impact of Healthy Lifestyle Factors on Life Expectancies in the US population</u>

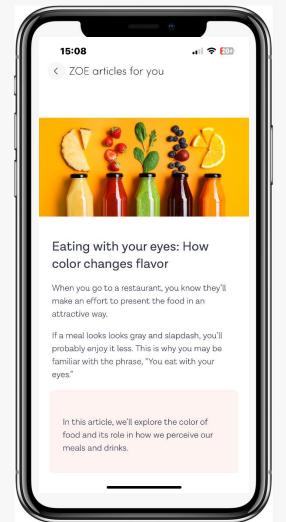


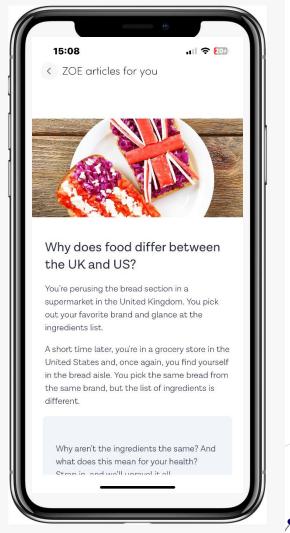


Power of the crowd to drive insights & improvements - ZOE

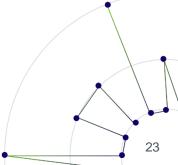








Power of the crowd to drive insights & improvements - ZOE



Using machine learning to classify within populations Life2Vec trained on Danish national population

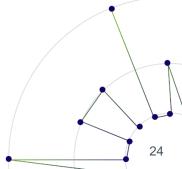
Chart redacted for copyright.

• Chart available as fig 1 in Nature Computational Science's <u>A transformer method that predicts human lives from sequences of life events</u>

A landscape of future drivers of life expectancy

Chart redacted for copyright.

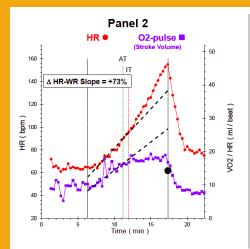
• Chart available on p15 in Swiss Re's The future of life expectancy, 2023


Questions to ask?

How likely?

Peak impact?

When and where available?



My experience as a 1% (er)

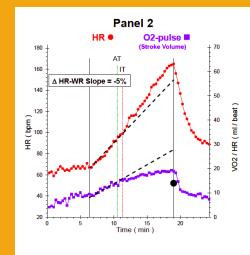
Longevity now

Healthy Longevity Center, Florida

Data

EKG Summary: Abnormal ST depression without ventricular ectopy

Functional Capacity:


- Peak VO2 = 121% of predicted.

Cardiovascular Risk Assessment: INCREASED - Yellow*
- HR@IT = 96 beats per minute

Target Peak VO2: 40 ml/kg/min**

- * See Risk Stratification and Management Page
- ** 10% Increase from Baseline

23 March 2023

EKG Summary: Abnormal ST depression without ventricular ectopy

Functional Capacity:

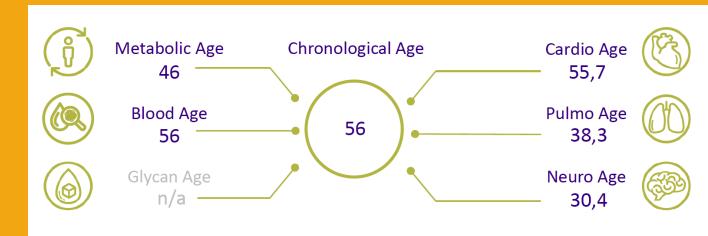
- Peak VO2 = 140% of predicted.

Cardiovascular Risk Assessment: INCREASED - Yellow*

- HR@IT = 100 beats per minute

Target Peak VO2: 46 ml/kg/min**

- * See Risk Stratification and Management Page
- ** 10% Increase from Baseline



14 November 2023

My experience as a 1% (er)

Longevity Center, Warsaw

24 October 2023

Data

Patient Profile	Percentile Range				> 74	25 - 74	9 - 24	2 - 8	< 2
Patient Prome	Standard Score Range				> 109	90 - 109	80 - 89	70 - 79	< 70
Domain Scores	Patient	Standard Per	Percentile	VI**	Above	Average	Low	Low	Very
Dollialii Scores	Score	Score	reiteillie	VI	ADOVE	Average	Average		Low
Neurocognition Index (NCI)	NA	105	63	Yes		Х			
Composite Memory	99	104	61	Yes		Х			
Verbal Memory	49	90	25	Yes		Х			
Visual Memory	50	116	86	Yes	Х				
Psychomotor Speed	202	133	99	Yes	Х				
Reaction Time*	828	75	5	Yes				Х	
Complex Attention*	4	108	70	Yes		Х			
Cognitive Flexibility	48	106	66	Yes		Х			
Processing Speed	63	123	94	Yes	Х				
Executive Function	49	106	66	Yes		Х			
Working Memory	12	111	77	Yes	Х				
Sustained Attention	34	113	81	Yes	Х				
Simple Attention	40	107	68	Yes		Х			
Motor Speed	138	129	97	Yes	X				

Overall progress by longevity biotech domain

	Pre	1	2	3	Арр
Cellular reprogramming					
Discovery platforms					
Longevity drugs					
Longevity genetics					
Longevity immunity					
Microbiome					
Neuropharma					
Metabolic rejuvenation					
Regeneration					
Rejuvenation					
Reproductive longevity					
Repurposed drugs					
Senotherapeutics					

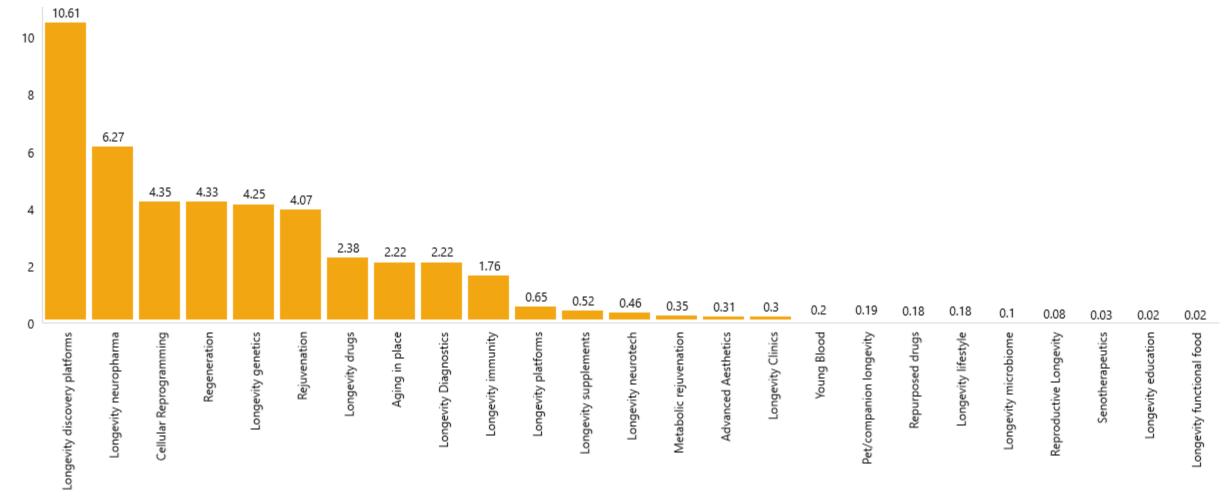
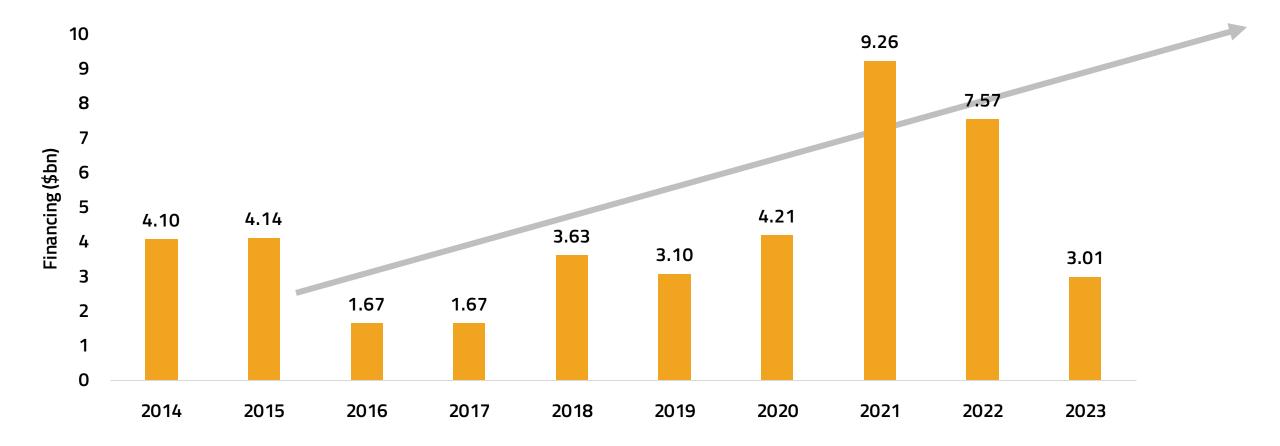
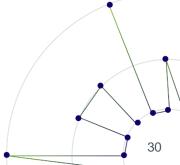



Figure: Longevity companies investment activity analysis by Longevity. Technology, based on Pitchbook data funding data as of 31/12/23.

Widening differences in life expectancy

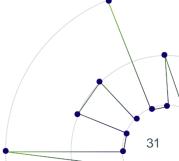
UK USA


Chart redacted for copyright.

• Chart available as fig 4 in The King's Fund

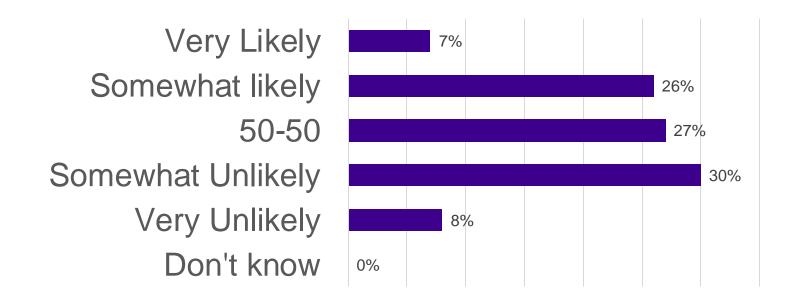
Chart redacted for copyright.

• Chart available as fig 4 in The Washington Post


Continuing impact of COVID-19 on survivors

Complement activation
Reduced cortisol
Serotonin depletion

Chart redacted for copyright.


Chart available as fig 3 in <u>Cognition and Memory after COVID-19 in a Large Community Saumple</u>



Poll question

"How likely is it that annual mortality improvements will increase materially above the levels we saw in the c100 years up to 2019 in the next 20-30 years?"

THE RISK OF LIVING LONGER

Douglas and Uli ask the ultimate question of human longevity for financial institutions:

How long can we go?

Series program

Session 1 April 16 th , 2024	An introduction to the question of human longevity: how long can we go?	Dan Ryan, Just GroupPhil Newman, Longevity.technology	Today!
Session 2 May 7 th , 2024	The biology of aging	Richard Faragher, University of Brighton	Register here
Session 3 May 28 th , 2024	Cancer research	Xiao Gao, SCORCatherine Pickworth, Cancer Research UK	Register here
Session 4 June 18 th , 2024	Biological clocks	Peter Joshi, Humanity Inc	Register here
Session 5 July 9 th , 2024	Using AI to improve and advance healthcare	• tbc	Register here

For full details and registration for the series,

visit: <u>www.clubvita.net/us/events</u> or follow <u>in http://linkedin.com/company/club-vita</u>

Thank you

This presentation contains confidential information belonging to Club VITA LLP (CV). CV are the owner or the licensee of all intellectual property rights in the presentation. All such rights are reserved. The material and charts included herewith are provided as background information for illustration purposes only. This presentation is not a definitive analysis of the subjects covered and should not be regarded as a substitute for specific advice in relation to the matters addressed. It is not advice and should not be relied upon. This presentation should not be released or otherwise disclosed to any third party without prior consent from CV. CV accept no liability for errors or omissions or reliance upon any statement or opinion herein.