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Poll question

"How will big data and Al contribute to changes in
ife expectancy for a 60-year-old in 20 years’time?”

Reduce life expectancy - 4%

Increase by less than 2 years | -0
increase by 2 to 5 years | -0

Increase by 6 to 10 years - 7%

Increase by 11 to 20 years 0%
Increase by more than 20 years 0% M
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What 1s AI?
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Types of machine
learning

aVITA

* Image redacted for copyright.

* Image available on Artificial Intelligence in Cardiac
Imaging - Scientific Figure on ResearchGate. Available
from: https://www.researchgate.net/figure/Types-of-
Machine-Learning-with-Examples-of-Respective-

Use figl 339462675 . Accessed July 9.



https://www.researchgate.net/figure/Types-of-Machine-Learning-with-Examples-of-Respective-Use_fig1_339462675
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How might “AI” impact healthcare & longevity?
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We're an independent,
biomedical research
Institution that empowers
the global biomedical
community with research
tools, data resources &
education.
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Cray 2 Supercomputer (~1985)
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Source: NASA
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http://gimp-savvy.com/cgi-bin/img.cgi?ailswE7kkmL1216740
https://unsplash.com/photos/silver-aluminum-case-apple-watch-with-white-sport-band-3_PaUEEcwMc

Cost of Sequencing a Human Genome

* Image redacted for copyright.
* Image available on Wetterstrand KA. DNA Sequencing Costs: Data

from the NHGRI Genome Sequencing Program (GSP) Available
at: www.genome.gov/sequencingcostsdata. Accessed July 9.
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For help understanding the logarithmic scale see here: Exponential growth and an appreciation for the logarithm
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https://www.clubvita.net/us/news-and-insights/exponential-growth-and-an-appreciation-for-the-logarithm-2
http://www.genome.gov/sequencingcostsdata

Transfer learning-trained
convolutional neural
networks identify novel MRI
biomarkers of Alzheimer's
disease progression.

Li Y, Haber A, Preuss C, John C, Uyar A, Yang HS, Logsdon BA, Philip V,
Karuturi RKM, Carter GW; Alzheimer's Disease Neuroimaging Initiative.
Transfer learning-trained convolutional neural networks identify novel MRI
biomarkers of Alzheimer's disease progression. Alzheimers Dement
(Amst). 2021 May 14;13(1):e12140. doi: 10.1002/dad2.12140. PMID:
34027015; PMCID: PMC8120261.
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Augmented CNN

Image CNN Model

Model
3 phenotypes:
?mageCNN.PCl, 1 phenotype:
imageCNN.PC4, augmentedCNN.PC2

imageCNN.PC9

Metabolite association, GW AS,
FUMA gene mapping, AMP-AD gene co-expression
submodule enrichment analysis

Legend:

[derived phenotypes]
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Harnessing large language models (LLMs) for candidate gene prioritization and selection E@B®
| —

Detection &
Discovery

* Image redacted for copyright.
« Image available here: https://doi.org/10.1186/s12967-023-04576-8

Toufig, M., Rinchai, D., Bettacchioli, E. et al. Harnessing large language models (LLMs) for candidate gene prioritization and selection. J Transl Med 21,728 (2023).
https://doi.org/10.1186/s12967-023-04576-8
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https://doi.org/10.1186/s12967-023-04576-8

“AMR 1s one of the S9%
top 10 global public

health threats facing

humanity” wuo
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https://www.who.int/docs/default-source/antimicrobial-resistance/amr-factsheet.pdf
https://med.stanford.edu/news/all-news/2024/03/ai-drug-development.html#:~:text=Generative%20AI%20develops%20potential%20new%20drugs%20for%20antibiotic%2Dresistant%20bacteria,-share&text=Stanford%20Medicine%20researchers%20devise%20a,the%20drugs%20in%20the%20lab.

“...we didn’t build algorithms specifically for
COVID; we just put them through the same
pipeline of activity that we’ve been doing. We just
turned it as fast as we could. When we think
about everything we do at Moderna, we think
about this platform capability. We were never
going to make one drug; that was never the plan.
The plan was always to make a whole platform
around mRNA because, since it’s an information-
based product, all you do is change the
information encoded in the molecule, and you
have a completely different drug.”

Dave Johnson, Moderna

Source: Me, Myself and Al: Al and the COVID-19 vaccine. An interview podcast with Dave Johnson chief data and
artificial intelligence officer at Moderna. Transcript and podcast available from MIT Sloan Management review at
https://sloanreview.mit.edu/audio/ai-and-the-covid-19-vaccine-modernas-dave-johnson/

Source of image: Unsplash
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https://sloanreview.mit.edu/audio/ai-and-the-covid-19-vaccine-modernas-dave-johnson/
https://unsplash.com/photos/yellow-and-white-labeled-bottle-TbIOvXIEMJY
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Al that determines risk of death helps save lives in

An Al trained on the heart’s electrical activity alerted physicians about patients at high

risk of dying, significantly reducing deaths in a clinical trial with almost 16,000 patients
at two hospitals

By Jeremy Hsu

29 April 2024

Source: New Scientist
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https://www.newscientist.com/article/2428674-ai-that-determines-risk-of-death-helps-save-lives-in-hospital-trial/#:~:text=An%20artificial%20intelligence%20system%20has,patients%20by%2031%20per%20cent.
https://www.newscientist.com/article/2428674-ai-that-determines-risk-of-death-helps-save-lives-in-hospital-trial/#:~:text=An%20artificial%20intelligence%20system%20has,patients%20by%2031%20per%20cent.
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ChatGPT correctly diagnosed a 4-year-old’s
mysterious disease after 17 doctors failed

By Kate Hull

September 12, 2023

®
Source: Business Insider \J\
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https://www.newscientist.com/article/2428674-ai-that-determines-risk-of-death-helps-save-lives-in-hospital-trial/#:~:text=An%20artificial%20intelligence%20system%20has,patients%20by%2031%20per%20cent.
https://www.businessinsider.com/chatgpt-diagnose-child-disease-tethered-cord-syndrome-doctors-2023-9?utm_source=copy-link&utm_medium=referral&utm_content=topbar
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* Image redacted for copyright.
* Image available here: https://www.technologyreview.com/2020/11/30/1012712/deepmind-protein-
folding-ai-solved-biology-science-drugs-disease/

Source: MIT technology review
CLUNITA 19



https://www.technologyreview.com/2020/11/30/1012712/deepmind-protein-folding-ai-solved-biology-science-drugs-disease/
https://www.technologyreview.com/2020/11/30/1012712/deepmind-protein-folding-ai-solved-biology-science-drugs-disease/
https://www.technologyreview.com/2020/11/30/1012712/deepmind-protein-folding-ai-solved-biology-science-drugs-disease/

Japanese robot can lift patients from
beds into wheelchairs or help them
to stand up, promising “powerful yet
gentle care” for the elderly

* Image redacted for copyright.

Source: Robear: the bear-shaped nursing robot who'll look after you
when you get old | Robots | The Guardian

* Image redacted for copyright.

Source: https://www.genieconnect.co.uk/
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https://www.genieconnect.co.uk/
https://www.theguardian.com/technology/2015/feb/27/robear-bear-shaped-nursing-care-robot
https://www.theguardian.com/technology/2015/feb/27/robear-bear-shaped-nursing-care-robot

The smart floor monitoring system based on the deep
learning-enabled smart mats (DLES-mats)

* |Image redacted for copyright.

Source: Part of Figl extracted from Deep learning enabled smart mats as a scalable floor monitoring system
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https://www.nature.com/articles/s41467-020-18471-z

€ Alis the cornerstone of preventive medicine and health

behaviour change. Everyone has unique behaviours, needs

and preferences; there's no way traditional healthcare can

cope with this form of complexity in providing personalised
and precision care.

— Dr Jocelyn Chew yy

Source: https://www.nuhsplus.edu.sg/article/leveraging-ai-for-health-behaviour-change
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https://www.nuhsplus.edu.sg/article/leveraging-ai-for-health-behaviour-change

Development and Application of Machine Learning-Based Digital Biomarkers for Monitoring

DIGITAL Spontaneous Seizures in Preclinical Epilepsy Models
‘] k IA IN VIVO

ALLIANCE Jennifer Leedy?, Nicole E. Peltier?, Lizet Reyes Rodas?, Manuel Lopez!, Manuel E. Ruidiaz?, Michael Saul?, Natalie Bratcher-Petersen?,
Timothy L. Robertson?3, Brian Berridge?

Enabling TecﬁElogy Inducible seizure assay (PTZ) to generate annotated dataset for LORR biomarker training

For this work, we ran a natural history study utilizing home-cage video [’*»—7,,_7
data from two mouse models of Dravet Syndrome, a severe epileptic Digital home-cages allow for 24/7 Card
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« Chart redacted for copyright.
 Chart available here: https://ourworldindata.org/grapher/test-scores-ai-capabilities-relative-human-
performance
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We want to
areas of research, views on future
he ar frOm life expectancies and lifespan?
you ! ,I:ii:rswttgft?arcekgtlifr:dsEjr:\getiltlook on longevity

Results shared with participants
Look out for details in inbox!

What are your views on promising




Poll question

"How will big data and Al contribute to changes in
ife expectancy for a 60-year-old in 20 years’time?”

Reduce life expectancy 0%

Increase by less than 2 years _ 33%
increase by 2 to 5 years | N -
Increase by 6 to 10 years - 10%

Increase by 11 to 20 years . 3%
Increase by more than 20 years l 2% M




THE RISK OF LIVING LONGER

Douglas and Uli ask the ultimate question of human longevity for financial institutions:

How long can we go?
Series program

Session 1 An introduction to the question of « Dan Ryan, Just Group Recording here
April 16™, 2024 human longevity: how long can we go? + Phil Newman, Longevity.technology
Session 2 The biology of aging * Richard Faragher, University of Brighton Recording here
May 7t, 2024 * Niharika Duggal, University of Birmingham
Session 3 Cancer research * Gao Xiao, SCOR Recording here
May 28th, 2024 * Catherine Pickworth, Cancer Research UK
Session 4 Biological clocks * Peter Joshi, Humanity Inc Recording here
June 18th, 2024 « John Schoonbee, Swiss Re
Session 5 Using Big Data and Al to improve and * Gregg TeHennepe, The Jackson Laboratory Today!
July 9th, 2024 advance longevity « Steven Baxter, Club Vita

Session 6+ More sessions will be added in fall 2024

Stay tuned! Reach out with your suggested topics!

For full details and registration for the series,
aVITA  visit @ www.clubvita.net/uk/events or follow [in] http:/linkedin.com/company/club-vita
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https://www.clubvita.net/us/events/the-risk-of-living-longer-series-session-1-5-an-introduction-to-the-problem
https://www.clubvita.net/us/events/the-risk-of-living-longer-series-session-1-5-an-introduction-to-the-problem-2
https://www.clubvita.net/us/events/the-risk-of-living-longer-series-session-1-5-an-introduction-to-the-problem-2-2-2
https://www.clubvita.net/us/events/the-risk-of-living-longer-series-session-1-5-an-introduction-to-the-problem-2-2-3
http://www.clubvita.net/uk/events
http://linkedin.com/company/club-vita
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Thank you

This presentation contains confidential information belonging to Club VITA LLP (CV). CV are the owner or the
licensee of all intellectual property rights in the presentation. All such rights are reserved. The material and charts
included herewith are provided as background information for illustration purposes only. This presentation is not a
definitive analysis of the subjects covered and should not be regarded as a substitute for specific advice in relation to
the matters addressed. It is not advice and should not be relied upon. This presentation should not be released or
otherwise disclosed to any third party without prior consent from CV. CV accept no liability for errors or omissions or
reliance upon any statement or opinion herein.

31



	Slide 1
	Slide 2:  
	Slide 3: Poll question
	Slide 4: Big Data & AI
	Slide 5
	Slide 6: What is AI?
	Slide 7: Types of machine learning
	Slide 8: How might “AI” impact healthcare & longevity?
	Slide 9
	Slide 10
	Slide 11: Cost of Sequencing a Human Genome
	Slide 12
	Slide 13
	Slide 14: “AMR is one of the top 10 global public health threats facing humanity”   WHO
	Slide 15
	Slide 16: AI use cases and applications
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: The smart floor monitoring system based on the deep learning-enabled smart mats (DLES-mats)
	Slide 22
	Slide 23
	Slide 24: What’s next in AI?
	Slide 25
	Slide 26: Healthcare advancements watchlist
	Slide 27: How might “AI” impact healthcare & longevity?
	Slide 28
	Slide 29: Poll question
	Slide 30
	Slide 31

