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Abstract  Résumé 

In this paper, we further the research 
published by the Canadian Institute of 
Actuaries in the Final Report of Canadian 
Pensioners’ Mortality study, (CPM, 
(2014)), and consider new factors that 
explain differences in Canadian pensioner 
baseline mortality. We explore many of 
the factors that were found to explain UK 
pensioner baseline mortality in (Madrigal, 
Matthews, Patel, Gaches, & Baxter, 
(2011)).  

The factors we explore include the 
following: health condition at retirement, 
affluence, geographical information 
together with socio-economic factors (i.e., 
geodemographics), occupation, industry, 
and public versus private sector, among 
others. We analyzed mortality data for 
defined benefit pensioners collected by 
Club Vita Canada directly from pension 
plan and post-retirement benefit plan 
sponsors or their administrators.  

The data analyzed covers approximately 
1.4 million exposure years and 38,000 
deaths for pensioners and survivors during 
the calibration period of 2012–2014. We 
found that retirement health and 
geodemographic information (via postal 
code) were some of the most important 
drivers of variations in baseline mortality, 
along with pensioner type (i.e., pensioners 

Dans le présent document, nous poursuivons la 
recherche publiée par l’Institut canadien des 
actuaires dans le Rapport final de l’étude de la 
mortalité des retraités canadiens, (CPM, (2014)), 
et nous analysons de nouveaux facteurs qui 
expliquent les différences au chapitre de la 
mortalité de base des retraités canadiens. Nous 
examinons bon nombre des facteurs réputés 
expliquer la mortalité de base des retraités du 
Royaume-Uni, dans (Madrigal, Matthews, Patel, 
Gaches, & Baxter, (2011)). 

Les facteurs que nous étudions comprennent, 
entre autres : l’état de santé à la retraite, la 
richesse, les données géographiques jumelées à 
des facteurs socioéconomiques (c.-à-d. les 
caractéristiques géodémographiques), la 
profession, le secteur d’activité, et le secteur 
public ou privé. Nous avons analysé les données 
sur la mortalité des retraités touchant des 
prestations déterminées. Ces données sont 
recueillies par le Club Vita Canada directement 
auprès des promoteurs de régimes de retraite et 
des régimes de prestations à la retraite, ou de 
leurs administrateurs.  

Les données analysées portent sur environ 
1,4 million d’années d’exposition et 38 000 décès 
de retraités et de survivants pendant la période 
d’étalonnage comprise entre 2012 et 2014. Nous 
avons constaté que l’information sur la santé à la 
retraite et les données géodémographiques (par 
code postal) comptaient parmi les vecteurs les 
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versus surviving spouse), affluence (via 
salary or pension amount), and 
occupation. In contrast to current 
Canadian pension industry practices, 
whether pensioners were part of a public 
sector or private sector plan was found 
not to be a significant factor in the context 
of other available factors.  

After determining the key factors, we 
model Canadian baseline post-retirement 
mortality for defined benefit pension plan 
members by applying a generalized linear 
modelling framework. The models created 
explain variations in period life expectancy 
at age 65, ranging nine years for male 
pensioners compared to (CPM, (2014)) 
which explained just under four years 
when accounting for sector and pension 
size.  

We found that by capturing the baseline 
mortality characteristics of individual plan 
members, plans could develop more 
accurate baseline mortality assumptions, 
as supported by closer alignment with 
their own experience. A focus on 
individual plan member factors also allows 
longevity characteristics to be uncovered 
that cannot be identified through actual-
over-expected mortality experience 
analysis (e.g., due to differences in the 
profile of current pensioners and active 
members).  

The results presented in this paper are 
directly applicable to Canadian defined 
benefit pension and post-retirement 
benefit plans in the assessment of 
baseline mortality and longevity risk, and 
the creation of assumptions for actuarial 
valuations for funding and financial 
statement purposes, as well as pricing and 
valuing of insured group annuitant 
portfolios by insurance and reinsurance 

plus importants de la variation de la mortalité de 
base, tout comme le type de retraité (c.-à-d. 
retraité ou conjoint survivant), la richesse (au 
moyen du salaire ou du montant de la rente) et la 
profession. Nous avons constaté que 
contrairement aux pratiques actuelles du secteur 
canadien des régimes de retraite, la question de 
savoir si les retraités participaient à un régime 
public ou privé ne constitue pas un facteur 
important dans le contexte des autres facteurs 
disponibles.  

Après avoir déterminé les facteurs clés, nous 
modélisons la mortalité canadienne de de base 
postérieure à la retraite pour les participants de 
régimes de retraite à prestations déterminées en 
appliquant un cadre de modélisation linéaire 
généralisée. Les modèles créés expliquent les 
variations de l’espérance de vie à 65 ans, soit 
neuf ans pour les hommes retraités 
comparativement à (CPM, (2014)), qui est 
ramenée à un peu moins de quatre ans si l’on 
tient compte du secteur et de l’ampleur de la 
rente. 

Nous avons également constaté qu’en saisissant 
les caractéristiques de base de la mortalité des 
participants individuels, les régimes pouvaient 
élaborer des hypothèses plus précises de la 
mortalité de base, comme l’indique 
l’harmonisation plus étroite avec leur propre 
expérience. L’accent mis sur les facteurs propres 
à chaque participant à un régime permet 
également de découvrir les caractéristiques de la 
longévité qui ne peuvent être décelées au moyen 
de l’analyse des résultats de mortalité réelle par 
rapport à prévue (p. ex., en raison des différences 
dans le profil des retraités actuels et des 
participants actifs). 

Les résultats affichés dans le présent document 
s’appliquent directement aux régimes de retraite 
à prestations déterminées et aux régimes 
canadiens de prestations postérieures à la 
retraite dans le cadre de l’évaluation du risque 
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companies. de mortalité et de longévité de base, à la 
création d’hypothèses pour les évaluations 
actuarielles aux fins du provisionnement et de la 
préparation des états financiers, de même qu’à 
la tarification et à l’évaluation des portefeuilles 
de rentes collectives des assurés par les sociétés 
d’assurances et de réassurance. 
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1. Introduction 

Organizations that sponsor pension and post-retirement plans for their current and former employees 
have become increasingly aware of the risk and increased costs posed by their members continuing to 
outlive previous longevity expectations. The uncertainty about how long plan members will live 
exposes pension and post-retirement benefit plan sponsors to longevity risk. The key components of 
that longevity risk can be deconstructed as follows: 

 Idiosyncratic risk – may also be known as individual risk or binomial risk, and relates to the 
variations in mortality experience within a specific population compared to mortality 
expectations. Idiosyncratic risk is reduced as the size of the population increases because the 
mortality patterns of the plan population become more stable. 

 Measurement risk – stems from the difficulty in measuring baseline mortality (i.e., current 
mortality rates) given the large amounts of data required, and the uncertainty about how well 
baseline mortality expectations represent the expectations of different populations. Large 
plans will often perform mortality studies to assess how their plan’s mortality experience 
compares to that of a published mortality table, and may apply adjustment factors to attempt 
to mitigate measurement risk. 

 Trend risk – represents the fact that mortality rates are expected to change in the future, and 
particularly that they will likely continue to decrease; however, there is significant uncertainty 
regarding the pace at which mortality rates will decrease. The only way for a plan to truly 
mitigate trend risk is to hedge that risk, such as through a longevity insurance or swap 
transaction, or a buy-in or buyout annuity.  

Measurement risk can be mitigated through better measurement of baseline mortality. In this paper, 
we focus on identifying the factors that best explain variations in baseline mortality and then build 
models that allow baseline mortality assumptions to be tailored to the mortality characteristics of 
specific groups of individuals (e.g., pension plan or group annuitants). We do this by collecting and 
analyzing a large volume of recent pension plan mortality experience data that includes information 
regarding a wide range of mortality factors. We employ comprehensive statistical modelling to 
identify those factors that are most predictive of Canadian pensioner baseline mortality, and use 
generalized linear modelling (GLM) to create baseline mortality assumptions that capture the 
influence of the different factors.  

When valuing pension and post-retirement obligations, most Canadian plans currently use one of the 
baseline mortality tables published in (CPM, (2014)). The CPM study published three sets of gender-
specific baseline mortality tables—namely the combined, private, and public—and included a set of 
pension amount size adjustment factors to allow users to adjust the published tables for differences in 
baseline mortality expectations by pension size. The CPM study provided significant improvements 
upon past published baseline mortality studies, in particular: 

 It was the first comprehensive published study covering Canadian defined benefit pensioners 
(i.e., past studies had predominantly consisted of US pensioners); and 

 The introduction of public versus private sector tables, and pension size adjustment factors 
provided the ability for plans to begin to customize baseline mortality assumptions to their 
plan members’ specific characteristics. 
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The CPM study was not without its challenges and the final report notes that while the researchers 
would have liked to investigate other factors (e.g., socio-economic ones), limitations of the data 
provided prevented such an investigation.  

This paper therefore aims to build upon the findings of the CPM study through the investigation of a 
wider range of mortality factors. To do this we follow (Madrigal, Matthews, Patel, Gaches, & Baxter, 
(2011)) and consider a comprehensive series of mortality rating factors including age, gender, health 
condition at retirement, affluence (via pension or salary), geographical information together with 
socio-economic factors (geo-demographics), occupation, industry, and public versus private, among 
others. We apply GLM in a multivariate framework to fit the baseline mortality. The GLM approach 
provides substantial flexibility not only to analyze the effect of each factor individually and assess its 
importance on baseline mortality, but also evaluate their interaction (e.g., with age) simultaneously. 
We believe our approach of constructing baseline mortality rates using a range of mortality factors in 
a multivariate framework 

 Enables plans to develop baseline mortality assumptions that are much more representative of 
their plan members by accounting for individual member characteristics. 

 Reduces the reliance on plan-level actual over expected adjustments (which are generally only 
possible for very large plans) when standard mortality tables are suspected not to be 
representative based on analysis of credible historical plan-specific mortality experience. 

 Allows plans without credible mortality experience the ability to estimate baseline mortality 
for their plan membership more accurately. 

 Accounts for how the mortality profile of a plan’s membership influences its projected benefit 
payments (i.e., how the shape of mortality with age varies based on different mortality 
factors), enabling better matching to projected asset cash flows in a liability-driven investment 
strategy. 

 Allows mortality assumptions to capture changes in the mortality characteristics of different 
generations of plan members (e.g., a plan’s active members may have very different 
characteristics, and therefore life expectancies, than the pensioner population that worked 30 
years ago). 

The main contributions of this paper can be summarized as follows: 

 We have analyzed pensioner and survivor mortality data between 2012 and 2014 which 
provides an update compared to the CPM study’s collection period of 1999 to 2008. 

 We have examined a wide set of mortality rating factors in the modelling of baseline defined 
benefit pensioner mortality in Canada, which—to the best of our knowledge—have not been 
investigated previously in published research. 

 We determined the importance of postal code based lifestyle grouping in our analysis. 
 We found that the differentiation of public sector versus private sector employment is not 

statistically significant when considering other explanatory rating factors. 
 Rather than the traditional plan-specific approach that adjusts standard tables for plan 

experience, we are providing an alternative member-focused approach by creating sets of 
mortality rates for subgroups of plan members based on key rating factors that show 
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statistically significant differences in baseline mortality. These mortality tables can be readily 
used to map each plan member independently (regardless of being in a large or small plan) 
based on their individual characteristics. This approach elevates the ability to customize 
baseline mortality assumptions for specific Canadian pension plan membership populations 
compared to the current status quo, which primarily considered only public vs. private sector 
and pension size. 

This paper is organized as follows: 

 Section 2 provides a summary of the data analyzed including the factors investigated, 
definitions of age, exposure and death, data validations performed, and how we classified 
data. 

 Section 3 provides a brief review of the generalized linear model and methodology that we 
use to develop models for baseline mortality.  

 Sections 4 and 5 illustrate our process for developing our baseline mortality models, including 
a detailed review of all the statistical and actuarial tests performed.  

 Sections 6 and 7 present adjustments and extensions of the final models.  
 Sections 8 and 9 investigate the performance of the final models.  
 Section 10 compares our results to those of the CPM study. 
 Section 11 summarizes our key findings. 

2. Data Set and Data Preparation 

The data used to determine the key rating factors that predict Canadian pensioner baseline mortality 
and to perform the modelling outlined in this paper were compiled by Club Vita Canada, a subsidiary 
of Eckler. The data set consists of a cross section of Canadian defined benefit pension plan members 
across the country and industries, and includes both private and public sector plans. In total, the data 
set analyzed consisted of data contributed from 34 plans. 

The death experience data focuses on post-retirement ages only, as pre-retirement mortality is 
typically of a much lesser concern due to the nature of pre-retirement death benefits. We have 
analyzed post-retirement mortality separately for males and females, and also differentiate between 
pensioners and survivors—this is in contrast to the CPM study, which excluded survivors. Given that 
gender and pensioner type (i.e., original plan member pensioner versus surviving spouse) represent 
distinct groups, these factors were used to stratify the data into the following four strata: 

 Male pensioners; 
 Female pensioners; 
 Male survivors; and 
 Female survivors 

We further stratify male and female pensioners by retirement health type, with disabled pensioners 
being referred to as “ill health” and non-disabled pensioners as “non-ill health”. 

The data set covers mortality experience over the calendar years 2012–2014. While many Club Vita 
Canada member plans have provided historical mortality experience prior to 2012 and after 2014, we 
have used the three-year period for the following reasons: 
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 Baseline mortality can and should be measured objectively, whereas future mortality trends 
(i.e., how mortality varies over time) are inherently subjective due to the uncertainty of how 
future mortality trends will compare to the past. Given that baseline mortality represents the 
rates of death that are currently being experienced, ideally only a single calendar year would 
be used. However, even with very large data sets, mortality experience can vary materially 
year-to-year across ages and factors. Expanding the range beyond a single year then begins to 
combine the impact of baseline mortality and mortality trends.  

 The longer the period used to assess baseline mortality, the more difficult it will be to identify 
changes in baseline mortality over time. 

 2014 was selected as the final year for our analysis since it was the latest year where complete 
and reliable mortality experience was available for all plans.  

Considering the points above, we follow (Madrigal, Matthews, Patel, Gaches, & Baxter, (2011)) and 
use a three-year range which we believe provides an appropriate balance. The middle year of the 
mortality experience analyzed is 2013, and therefore this can be viewed as the base year for the 
resulting mortality models. 

The remainder of this section 

 Outlines the primary factors we have investigated; 
 Describes how age, deaths, and exposures have been calculated; 
 Provides more information on our data validation and quality assessment process; 
 Outlines how certain data fields have been classified for modelling purposes; and 
 Shows summary statistics for the data set. 

2.1 Covariates 

The following table outlines all the factors (i.e., covariates) that were investigated and their rationale 
for inclusion. The covariates investigated were largely selected because of the plan administrators’ 
ability to extract the information from their administration systems and because of evidence of their 
influence on mortality based on existing research or observed differences in mortality from available 
data. While we believe the list is comprehensive for the type of data available in pension 
administration systems, other factors exist but are mainly unattainable (e.g., smoking status). 

Table 1 

Investigated covariates and their rational for inclusion 

Covariate Rationale for inclusion 

Age Death rates are highly dependent on age.  

Gender Gender has been shown by numerous studies to be one of 
the most significant longevity differentiators. 

Pensioner type Various research and studies have shown that survivors 
exhibit different mortality patterns than pensioners, with 
this behaviour being attributed to the so-called grieving 
widow(er)s effect. For example, (Sullivan & Fenelon, 
(2014)) found that “Becoming widowed is associated with 
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Investigated covariates and their rational for inclusion 

Covariate Rationale for inclusion 

a 48% increase in risk of mortality”. 

Retirement health type The Society of Actuaries’ (SOA) RP-2014 Mortality Tables 
(Report, (2014)) found that disabled retirements had 
higher rates of mortality compared to non-disabled 
retirements. 

Pension amount The CPM study found that the relative level of mortality 
decreased with pension size. 

Pre-retirement earnings (i.e., salary amount) (Madrigal, Matthews, Patel, Gaches, & Baxter, (2011)) 
found that pre-retirement earnings generally outperform 
pension amount at differentiating mortality. 

Occupation The SOA’s RP-2014 study found that pensioners formerly 
employed in blue collar occupations exhibited higher 
levels of mortality than those who had white collar 
occupations. 

Sector The CPM study found a meaningful difference in mortality 
for public sector versus private sector pensioners. 

Industry The CPM study found that relative levels of mortality 
varied by industry. 

Province The Canadian Human Mortality Database highlights that 
mortality has varied by province.  

Postal district Further to mortality differences by province, Canada can 
be divided into smaller geographic regions by looking at 
the first character of postal codes (i.e., the postal district). 

Urban versus rural Another potential geographic mortality differentiator is 
whether pensioners live in an urban versus rural setting, 
as access to healthcare and lifestyle behaviour may vary 
between urban and rural populations. 

Postal code There is much research supporting variations in mortality 
by geographic regions smaller than province. Further, 
postal code can be used to proxy socio-economics factors 
such as level of education and household income, or a 
combination of factors via geodemographic segments.  

Year of exposure Given that mortality varies with time, it is natural to 
consider the impact of year of exposure.  

Month or season of birth The motivation for including month or season of birth 
stems from capturing any potential advantage (or 
disadvantage) gained from being born during a particular 
part of a year. For example, developmental advantages 
from being born early in the year. 

http://www.bdlc.umontreal.ca/chmd/
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2.2 Age, death, and exposure 

Age is obviously a critical factor in any mortality analysis. Similarly, the definitions of deaths and 
exposures are also very important. The remainder of this section explains our approach to the 
measurement of age, death, and exposure. 

For practical reasons, we convert continuous ages to integer ages for modelling purposes. Different 
age definitions are available to do this—that is, age last birthday, age nearest birthday, or age next 
birthday. We have selected the age nearest birthday definition (i.e., rounding the age of each member 
up or down to an integer number depending on his/her closest birthday), as we believe it is the most 
common definition pension actuaries use.  

Since we are analyzing mortality experience over three years, individual pensioners and survivors 
could have up to three records (i.e., one for each of the exposure years). For each record, the 
proportion of a year that an individual 𝑖𝑖, age 𝑥𝑥  is exposed to the risk of death, noted as 𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥, is 
determined based on the following: 

1. The later of January 1 of the exposure year and the date benefits commenced; and 
2. The earlier of December 31 of the exposure year and the date benefits ceased. 

The 𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥 is calculated as the number of days in the exposure year between (2) and (1) as defined 
above, divided by the total number of days in the year. If the member died during the year of 
exposure, the 𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥 is set to 1.  

At the beginning of each exposure year, a member can have already been exposed to the risk of death 
(i.e., benefits commenced in a prior year), become exposed during that calendar year, or not become 
exposed until a later year. By the end of each exposure year, a member can still be under the risk of 
death or have already exited the plan. Note that while pensioners and survivors will primarily exit due 
to death, it is also possible to see exits due to reasons other than death (e.g., pension benefits 
transferred to an insurer). 

2.3 Data validation and quality assessment 

Ideally, we would have complete and reliable data for every member for each plan. However, data is 
generally not complete for all plans and contains some degree of missing and/or suspicious data. 
Further, the period for which mortality experience data is available will vary by plan. To assess the 
completeness and reliability of the data, Club Vita Canada has performed an extensive data validation 
and quality assessment process for each plan. This process culminates in measures of data quality for 
each record (referred to as quality flags) and each plan. 

Our full data validation and quality assessment process is beyond the scope of this paper; however, 
we briefly outline our process for assigning quality flags due to its importance in the context of our 
modelling. Our process consists of three main phases as follows: 

1. Individual tests: Approximately 100 data validation tests are performed on each record to 
identify data issues. Tests primarily consist of those assessing the overall reliability of the 
record (i.e., missing or inconsistent dates) or the reliability of covariates (e.g., missing, 
suspiciously high, or suspiciously low pension amount).  
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2. Individual-level quality flags: Individual records are assigned quality flags based on the 
validation tests in phase 1, with the quality flag values being either Good or Bad. Different 
individual-level quality flags are determined at the overall record level and for different 
covariates. 

3. Stratum-level quality flag: The data for each plan is divided into four strata, which are based on 
the combination of gender and pensioner type. Stratum-level quality flags are set to Bad if the 
underlying individual-level quality flags exceed certain thresholds. The stratum-level quality 
flags involve looking at both live and deceased records separately, as well as different age 
ranges to assess whether Bad data introduces any statistical biases. 

Figure 1 shows the results of individual tests performed on pension and salary amounts. In this 
analysis, we have excluded those cases where data is missing, and instead are focused on identifying 
suspicious data. Some degree of suspicious data (e.g., very small pension amounts) is expected for 
each plan; however, we are trying to identify any systematic data issues that could bias our analysis. 
Overall, we can see that the majority of the data looks reasonable (gray solid circles), while there are 
some records with suspicious characteristics.  

Figure 1 

 
2.4 Data classification 

To facilitate the application of the models we develop to any plan member, we fit our models only 
using categorical covariates. Therefore, a set of mortality rates can be relatively easily assigned to any 
plan member based on their longevity profile. Alternatively, continuous variables could be used—
particularly for pension and salary amounts, as these are inherently continuous random variables. 
While it’s possible to fit models using pension and salary in the continuous form, we do not believe 
this is practical when implementing the models for actuarial work (i.e., it is preferable to have a finite 
number of mortality curves). Therefore, we classify pension and salary amounts into bands. Before 
dividing pensions and salaries into bands, we first need to ensure that they are consistently measured. 
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The approach we have used is to revalue pensions and salaries to a common revaluation date (in our 
case, December 2015). This is done by adjusting actual pension amounts by the difference in the value 
of the Consumer Price Index (CPI) at the revaluation date and the effective date of the pension 
amount. For salary amounts, the data provided is the salary the pensioner earned prior to leaving 
employment. Like pensions, we revalue salaries with CPI from the date the member left employment 
to the revaluation date to normalize the purchasing power of all salary amounts. 

In the CPM study, pension bands were set based on $500 increments of monthly pension amounts up 
to $6,000. While evenly distributed bands ease implementation, such a selection of bands is 
subjective. To minimize subjective judgment, we employed statistical clustering analysis to develop 
pension and salary bands. To do this, we first divided records into many initial bands with a minimum 
level of exposures in each band. The standardized mortality ratio (SMR)1 was then calculated for each 
initial band to assess the relative level of mortality while standardizing for age differences between 
bands (e.g., due to smaller pension amounts being more prevalent at older ages). We then follow 
(Breiman, Friedman, Olshen, & Stone, (1984)) and use the recursive partitioning and regression trees 
approach to cluster the initial pension and salary bands into an optimal number of discrete bands. To 
evaluate the size of the tree (i.e., the optimal number of bands), we analyzed the reduction in the 
relative error obtained by applying a 10-fold cross-validation as the tree grows. This means that the 
data is first divided into 10 equal bands and the tree is fitted using nine bands. The error is then 
obtained based on the performance of the model on the 10th segment. This procedure is repeated on 
all bands and the results are averaged and scaled to provide a cross-validation relative error. Figure 2 
illustrates the constructed regression tree using salary amount information for female pensioners. 
Two breakpoints ($39,900 and $58,000) are identified to create three salary bands. The percentage of 
exposures within each salary band is given in parentheses. 

                                                      
1 Ratio of observed number of deaths for the band, to the expected number of deaths based on all bands combined. The 
deaths are weighted based on the distribution of exposures for all bands combined to minimize bias introduced by 
variations in the age distribution for each band. 
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Figure 2 

 
 

Our clustering process to create pension bands (based on annual pension amount) is performed 
separately for each of our four strata. For salary bands, the clustering process is performed only for 
each of male and female pensioners, as salaries are not available for survivors. 

Another mortality rating factor that requires clustering is postal code. Since there are approximately 
900,000 Canadian postal codes, using them directly for mortality analysis is impractical. Therefore, 
instead of using postal codes directly, they can be linked to geodemographic segments which 
represent Canadians with different lifestyles (e.g., eating and exercise habits), socio-economic 
characteristics (e.g., affluence and level of education), and geographic differences (e.g., urban or 
rural). For our modelling, we have utilized a third-party geodemographic segmentation system that 
divides Canadians into about 70 different segments. With this as a starting point, we perform a similar 
clustering analysis as that described above for pension and salary bands. However, instead of 
clustering based on the SMR, we have used the crude life expectancy (calculated using method (II) in 
(Chiang, (1984))) for each geodemographic segment. By using different geodemographic segments, 
our pensioner population can be successively divided into homogeneous and relatively stable bands 
within different age groups. This enables us to estimate life expectancy at each geodemographic 
segment, which will be used in our clustering analysis. We performed our clustering separately for 
male and female pensioners. The result is what we refer to as postal code-based lifestyle groups or 
postal code-based longevity groups. We refer interested readers to (Breiman, Friedman, Olshen, & 
Stone, (1984)) and (Ripley, (1996)) for further discussion on this classification approach. 

Care is needed when carrying out the pension and salary bands and longevity group clustering 
outlined above. These bands and longevity groupings should be homogenous and contain reasonable 
exposure sizes, and should also be distinct enough to explain different variations in baseline mortality. 

Salary 
(100%)

Salary
(72%)

Salary band 
3 

(28%)

Salary band 
2

(40%)

Salary band 
1

(32%)
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We tested our pension and salary bands and longevity groups to make sure that they are statistically 
different from each other. In particular, we apply the following criteria: 

 Each salary/pension band and longevity group should contain at least 5 percent of the 
exposures. 

 Crude life expectancy at age 65 for each consecutive band or longevity group should be 
different by at least half a year. 

 Crude life expectancy at age 65 for each consecutive band or longevity group should be 
statistically different at a 95 percent confidence level. 

Using the above criteria, we created five longevity groups for male and female pensioners. Table 2 
provides a summary of the pension and salary bands.  

Table 2 

Summary of pension and salary bands by stratum 

Stratum Pension bands 
Median 
annual 
pension 

% of total 
stratum 
exposures 

Salary bands Median 
salary 

% of total 
stratum 
exposures 

Male 
pensioners 

<$16,400 

$16,400–$34,000 

>$34,000 

$8,573 

$24,065 

$44,320 

37% 

36% 

27% 

<$51,000 

$51,000–$63,800 

$63,800–$88,000 

>$88,000 

$44,586 

$56,420 

$75,570 

$100,775 

30% 

19% 

29% 

22% 

Female 
pensioners 

<$13,100 

$13,100–$34,400 

>$34,400 

$6,211 

$19,389 

$41,915 

59% 

34% 

7% 

<$39,900 

$39,900–$58,000 

>$58,000 

$34,782 

$46,179 

$74,783 

32% 

40% 

28% 

Male survivors 
<$11,100 

>=$11,100 

$4,586 

$15,474 

79% 

21% 
n/a n/a n/a 

Female 
survivors 

<$15,100 

>=$15,100 

$7,173 

$21,310 

70% 

30% 
n/a n/a n/a 

Of the clustering performed to determine the pension bands, salary bands, and longevity groups, 
pension bands proved to be the most challenging due to a lack of clear differentiation of SMR for 
small pension amount clusters. This was not unexpected, since pension is being used to proxy the 
influence of affluence on mortality, but those with small pensions will include a mix of individuals with 
low affluence and long service, and high affluence and short service. It is not until pension amounts 
reach high levels that lower levels of mortality become apparent.  

We observed an increasing trend in SMR for female pensioners with low pension amounts followed by 
a gradual decline as pension increases. As a result, the first female pensioner pension band includes 
almost 60 percent of exposures. Salary bands provided more differentiation compared to pension 
bands, particularly for male pensioners. 
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2.5 Data summary 

The data used in the modelling covered by this paper comes from a diverse range of plans of different 
sizes. Table 3 summarizes the number of plans by the size of their pensioner and survivor populations. 

Table 3 

Number of plans by size of pensioner and survivor population 

Number of pensioners and survivors 
combined as at December 31, 2014 Number of plans 

Less than 2,500 15 

2,500–9,999 8 

10,000–29,999 4 

30,000 or more 7 

Total 34 

 

Naturally, those plans with larger pensioner and survivor populations will have a correspondingly 
larger influence on the data used in our modelling. Therefore, it was critical to ensure the largest plans 
consisted of a diverse range of members in respect to affluence, occupation, and geography in order 
to minimize the risk of introducing bias into our modelling. In contrast, more homogeneous 
populations are acceptable for smaller plans. Given that it is currently common within the Canadian 
pension industry to differentiate mortality based on whether a plan covers private or public sector 
employees, it is worth noting the composition of our data in terms of private versus public sector. 
While the proportion of public sector plans is quite low compared to the total number of plans, about 
70 percent of all pensioners and survivors come from public sector plans, given that public sector 
plans tend to be very large.  

Figure 3 shows the total exposures and deaths by gender, pensioner type (pensioners versus 
survivors), and year of exposure. The total exposures and deaths over 2012 to 2014 are about 1.4 
million and 38 thousand, respectively. We can see that the number of exposures and observed deaths 
for male survivors is limited. 
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Figure 3 

 
 

Figure 4 shows the age pyramid for live pensioners and survivors by gender in 2014. It is clear that the 
pensioner populations are concentrated at younger retirement ages, while the survivor population is 
skewed toward older ages. This is expected, since survivors begin receiving benefits, and hence 
become exposed to the risk of death, only following the death of the original member pensioner. 

Figure 4 

 
 

2.6 Data coverage 

Ideally, good quality data would be available for all covariates, for all plans; however, the reality is that 
some plans simply do not have data available for some covariates. This is particularly true for 
occupation and retirement health type, as plans tend to either have this information for all members 
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or not have it at all. Salary prior to retirement is similar, with some plans having very robust data and 
others having no data, but some plans also have partial data (e.g., only for recent retirements) which 
results in the data having to be excluded. We aim to maximize the insight of the data available while 
minimizing the risk of introducing statistical biases. As we will show later, different combinations of 
covariates are modelled under the same statistical framework and models are discarded if they do not 
pass our modelling criteria. 

The following points describe the availability of good quality data for the mortality rating factors 
investigated: 

 Age, gender, and pensioner type were available for virtually all data (i.e., above 99.9 percent). 
Records with missing dates of birth, gender, or pensioner type were omitted from all analysis. 

 Public versus private sector was available for all data. 
 Industry was assigned for all plans based on the characteristics of the plan sponsor. 
 Postal code was available for over 99 percent of the data set and included representation of 

over 99 percent of all forward sortation areas (i.e., the first three characters of a postal code) 
in Canada. 

 Pension amount was available for almost 91 percent of the data set. While some plans had 
very small levels of missing pension amounts, the data where pension was unavailable were 
largely due to mortality data being sourced from non-pension post-retirement benefits being 
provided to defined benefit pensioners. 

 Salary prior to retirement was available for 43 percent of male pensioners and 44 percent of 
female pensioners. 

 Occupation was available for 39 percent of male pensioners but only 14 percent of female 
pensioners. Occupation information was particularly absent for public sector plans and data 
was limited for blue collar female pensioners.  

 Retirement health data was available for 55 percent of male pensioners and 49 percent of 
female pensioners. Of those with good quality retirement health data, only 2.6 percent retired 
with a disability pension. 

3. Model specification 

To determine the covariates that best explain differences in baseline pensioner mortality and to 
develop a set of statistical models as a function of age and covariates, we follow (Madrigal, Matthews, 
Patel, Gaches, & Baxter, (2011)) and use a GLM framework. This section gives a brief overview of 
GLMs. 

Let 𝑥𝑥��⃗ = �𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑝𝑝) be a 𝑝𝑝 dimensional vector of covariates (e.g., age, affluence group, etc.). Each 
of these 𝑥𝑥𝑡𝑡 , 𝑡𝑡 = 1,2, … ,𝑝𝑝 represents one factor that may have a significant effect on baseline 
mortality. Given a set of covariates (i.e., 𝑥𝑥��⃗ ) for a pension plan member, let 𝑌𝑌𝑥𝑥|�⃗�𝑥 , 𝑖𝑖 = 1, 2, … ,𝑛𝑛 be a 
Bernoulli random variable that takes only two possible values in any period of time as follows: 

𝑌𝑌𝑥𝑥|�⃗�𝑥 = � 0, 𝑖𝑖𝑖𝑖 member 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎 
1, 𝑖𝑖𝑖𝑖 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 𝑖𝑖𝑖𝑖 deceased. 
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In the GLM, we assume that expected value of 𝑌𝑌𝑥𝑥|�⃗�𝑥 (i.e., the probability of death) can be written as 

 
𝐸𝐸(𝑌𝑌𝑥𝑥|�⃗�𝑥) = 𝑞𝑞𝑥𝑥 =

𝑎𝑎𝛼𝛼+𝛽𝛽��⃗ �⃗�𝑥

1 + 𝑎𝑎𝛼𝛼+𝛽𝛽��⃗ �⃗�𝑥
  , (1) 

where 𝛼𝛼 and 𝛽𝛽 are the unknown parameters to be estimated. Here 𝛼𝛼 can be thought of as a general 
feature that is common among all covariates and 𝛽𝛽��⃗ = �𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑝𝑝) is a p-dimensional vector that 
represents the individual effect of each covariate. From equation (1), we can derive the following 
which represents the form of our GLM: 

 log(Odds) = log �
𝑞𝑞�⃗�𝑥

1 − 𝑞𝑞�⃗�𝑥
� = 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡( 𝑞𝑞�⃗�𝑥)  =  𝛼𝛼 + 𝛽𝛽�⃗�𝑥. (2) 

In other words, log(Odds) or 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞�⃗�𝑥) is a linear combination of the covariates. In that sense, 
equation (2) can be regarded as a generalization of the Perk’s law of mortality, as described in (Perks, 
(1932)). The above GLM is referred to as a logistic GLM and offers many advantages, including the 
following: 

 It can easily incorporate a multivariate framework. This is an appealing feature that enables us 
to capture the interaction effects of each covariate with age. 

 Each term can be statistically tested to see if its inclusion is significant or not in explaining 
variations in mortality. 

 The key metric of interest (i.e., rates of mortality) is modelled directly. 
 Equation (1) always preserves the range of probability to be within the interval [0,1]. 
 It allows non-linear effects with age to be captured. 
 There is no need for any additional distributional assumptions (e.g., normality assumption on 

the dependent variable or homogeneity of variance) as can be seen in many linear models. 
 Probabilities extremely close to 0 or 1 can be estimated. 

As with any mortality modelling approach, the GLM has its disadvantages. In particular, a large 
amount of data is required to reliably estimate 𝑞𝑞�⃗�𝑥. Therefore, it’s generally not feasible to use a GLM 
approach for any one individual pension plan. Also, although most Canadian actuaries are likely 
familiar with linear regression, the logit transformation and application for mortality may be new to 
many. Developing a GLM model involves complex procedures that often require extensive statistical 
expertise. While objective statistical criteria are defined to guide the model selection process, 
judgment may be needed when selecting the preferred model where there is no clearly superior one. 

Traditionally in Canada, baseline mortality assumptions have been developed for both pension and 
insurance applications using graduation techniques. For example, the CPM study graduated mortality 
rates using a Whittaker-Henderson method as explained in (Lowrie, (1982)). In this non-parametric 
approach, crude rates are smoothed by considering both lack of fit and lack of smoothness. An expert 
opinion is needed to apply the Whittaker-Henderson graduation method to find appropriate 
smoothing parameters. Similar to GLM, judgment is required; however, here it relates to the 
parameters. 
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In addition to the logistic GLM, there are other alternative statistical modelling frameworks commonly 
used for mortality. For example, rather than working with individual-level data, one may group data 
and use a binomial model or even a Poisson regression model for the grouped data. Complex survival 
models are another alternate approach. We refer interested readers to (Richards, (2008)) and (Cox, 
(1972)) for more information on applying survival models to pensioner data. 

To prepare the data for analysis, we determine the number of deaths and exposures for the three-
year period as follows: 

𝐴𝐴𝑥𝑥𝑥𝑥  : A 0/1 indicator that represents if the member 𝑖𝑖 at age 𝑥𝑥 died during the year of exposure; 

𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥 : The proportion of a year that individual 𝑖𝑖, age 𝑥𝑥 is exposed to the risk (ETR) of death; 

𝑞𝑞�𝑥𝑥𝑥𝑥 : Estimated mortality rate at age 𝑥𝑥 for individual 𝑖𝑖 obtained from fitting a GLM; 

𝐴𝐴𝑥𝑥 = ∑ 𝐴𝐴𝑥𝑥𝑥𝑥  𝑥𝑥  : Total number of deaths at age 𝑥𝑥; 

𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥 = ∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥 𝑥𝑥  : Total number of exposures at age 𝑥𝑥; and 

𝐸𝐸𝑥𝑥 = ∑ 𝑞𝑞�𝑥𝑥𝑥𝑥 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥 𝑥𝑥  : Total number of expected deaths at age 𝑥𝑥. 

4. Model development 

In this section, we provide details on how we developed our models. This includes the analysis of 
crude rates, determining the functional form of age (i.e., an age-only model), and fitting and selecting 
preferred models. Performance of the models are investigated using different statistical and actuarial 
tests. 

4.1 Crude rate analysis 

Once exposures are calculated, it is possible to determine the crude mortality rates (i.e., total number 
of observed deaths within a period divided by the total number of person-years exposed in that 
period). These unadjusted mortality rates are extremely important and can provide valuable 
information that can be used for model development. 

In Figure 5, crude mortality rates are shown on the logit scale for males versus females, for pensioners 
and survivors combined. Crude rates at each age are indicated by the empty circles. To assess the 
credibility of each estimated mortality rate, we performed a Monte Carlo simulation (as explained in 
the Appendix) and applied a Bayesian approach to find the 95 percent beta-binomial confidence 
intervals as shown by the vertical lines. This means that the uncertainty around the 𝑞𝑞𝑥𝑥 estimates and 
observed number of deaths are captured by assuming a beta distribution (as a prior information) and 
the binomial distribution, respectively. Graphically, longer vertical lines mean less certainty around 
the 𝑞𝑞𝑥𝑥 estimates, and the lower the empty circle, the lower the mortality at that age.   

As expected, we observe that women have generally experienced lower mortality compared to men. 
And within the 60 to 95 age range, we see that on the logit scale the crude rates resemble a straight 
line by age—supporting the use of the logistic GLM. We see more uncertainty around the 𝑞𝑞𝑥𝑥 estimates 
below age 60 and above age 95. In addition, the 𝑞𝑞𝑥𝑥 estimates themselves outside the 60 to 95 age 
range exhibit suspicious characteristics. For instance, the crude rates for females counter-intuitively 
exceed those for males below age 55, and both male and female crude rates appear to level off above 
age 95.  
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Furthermore, one can see that the gap between male and female mortality rates is larger at younger 
ages than older ages. This convergence feature is called the “compensation law of mortality”, and 
refers to when the significance of a mortality factor (in this case gender) diminishes as age increases. 

Figure 5 

 

Based on the observations noted above, we have selected a fitting age range from 60 to 95 for our 
analysis. We reassessed this age range for each different stratification of males and females—namely 
pensioners and survivors, and ill-health pensioners and non-ill-health pensioners. Based on this 
analysis, we have identified the following fitting age ranges for different strata: 

Table 4 

Fitting age range by stratum 

Stratum code Stratum description Fitting age range 

FPA Female Pensioners, All retirement health 60–95 

MPA Male Pensioners, All retirement health 60–95 

FWA Female survivors (Widows), All retirement health 60–95 

MWA Male survivors (Widowers), All retirement health 65–90 

FPI Female Pensioners, Ill-health retirement 60–90 

MPI Male Pensioners, Ill-health retirement 60–90 

FPN Female Pensioners, Non-ill-health retirement 60–95 

MPN Male Pensioners, Non-ill-health retirement 60–95 
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Table 4 highlights that we’ve reduced our fitting age range for male survivors (i.e., widower), and male 
and female ill-health pensioners. This is due to the small sample sizes of these strata. In fact, due to 
the limitations of the ill-health data, we have not directly fitted models for ill-health and non-ill-health 
pensioners to develop baseline mortality rates, but instead adjusted the all retirement health models 
for ill-health and non-ill-health relative mortality. We address how we incorporate the effect of 
retirement health in Section 6. 

4.2 Age-only model 

After stratifying the data by gender and pensioner type, we investigated the appropriate age 
functional form of the model. 

4.2.1 Fitted Values 

For illustration, we consider the male pensioner data set with all retirement health types (i.e., MPA). 
To develop our age-only model, we fitted six different logistic regression models including the 
following: linear, quadratic (second-degree), and cubic (third-degree) models, both directly with age 
and the reciprocal of age (i.e., 1/age). While we do not dismiss other age-functional forms, our 
rationale to consider linear/reciprocal forms in age is mainly due to the linear pattern that was 
exhibited when inspecting the crude mortality rates as shown in Figure 5. As mentioned in (Madrigal, 
Matthews, Patel, Gaches, & Baxter, (2011)), by considering the reciprocal of age as a possible 
functional form, we allow our models to reflect the compensation law of mortality when incorporating 
additional covariates. Figure 6 shows estimated crude rates (i.e., empty circles) with 95 percent beta-
binomial confidence intervals over the fitting age range of 60–95, and the fitted curves. 

Figure 6 

 
Visual inspection reveals that model 1 (the linear model in the reciprocal of age) provides a poor fit to 
the data by underestimating the observed crude rates at younger and older ages. Models 4 and 5 



Member’s Paper  May 2018 

24 

(linear and quadratic forms directly in age) also slightly underestimate crude rates over the age of 60–
63. Models 2, 3, and 6 seem to provide a good fit to the data. 

4.2.2 Goodness-of-fit tests 

To assess the goodness of fit of alternative models, we have investigated different statistical criteria to 
measure quality of the fit including the following: 

 Akaike information criterion (AIC): 

The AIC can be used to compare goodness of fit for different models when fitted to the same 
data set. It is defined as 

𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑘𝑘 − 2log�𝐿𝐿��, 

where k is the estimated number of parameters and L� is the maximum value of the likelihood 
function evaluated at estimated parameters, as defined in the Appendix. The AIC therefore 
evaluates the complexity of the model (by taking into account the number of estimated 
parameters), while also assessing goodness of fit (by considering the likelihood function). Thus, 
more complex models are penalized by a constant rate.   

 Bayesian information criterion (BIC): 

The BIC is similar in concept to the AIC and is defined as 

𝐵𝐵𝐴𝐴𝐴𝐴 = log (𝑛𝑛)𝑘𝑘 − 2log�𝐿𝐿��, 

where 𝑛𝑛 is the number of observations. The BIC penalizes more complex models to a greater 
degree than the AIC. The preferred models are those that provide low AIC or BIC when 
comparing different models. 

 Hosmer-Lemeshow test statistic (HL): 

The HL test statistic was proposed by (Hosmer & Lemeshow, (1980)) and is a modified version 
of the Pearson goodness of fit statistic. In the logistic regression modelling framework, the test 
is based on first sorting the observations in ascending order according to their predicted 
probabilities. Then data is divided into 𝑙𝑙 groups (e.g., 𝑙𝑙=10) such that the first group includes 
observations with the lowest predicted probabilities and the last group contains observations 
with the highest predicted probabilities. The test statistic is then defined as 

𝐻𝐻𝐿𝐿 = ∑ (𝑜𝑜𝑘𝑘−𝑛𝑛𝑘𝑘𝑜𝑜𝑘𝑘����)2

𝑛𝑛𝑘𝑘𝑜𝑜𝑘𝑘����(1−𝑜𝑜𝑘𝑘����)
𝑔𝑔
𝑘𝑘=1 , 

where 𝑛𝑛𝑘𝑘 is the total number of the subjects in group 𝑘𝑘, 𝑙𝑙𝑘𝑘 is observed number of deaths in 
group 𝑘𝑘, and 𝑙𝑙𝑘𝑘��� is the mean estimated probability of death in group 𝑘𝑘. A smaller HL statistic is 
preferred. In this paper, the AIC and BIC values have been our primary criteria to test over 
parameterization, while the HL test was a secondary criterion. 

Table 5 provides the functional forms for the six fitted models, along with the AIC, BIC, and HL test 
statistics. Parameters of each functional form are denoted by 𝑎𝑎, 𝑚𝑚, 𝑐𝑐, or 𝑑𝑑 and will be estimated 
throughout the fitting process. The table has been colour-coded where red denotes the poorest result 
and the darkest green the best result.  
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We can see that model 2 (i.e., the quadratic model in the reciprocal of age) outperforms other models 
based on the AIC and BIC. It also gives a relatively small HL test statistic. Generally, the model(s) with 
the smallest AIC or BIC is the preferred model(s). Using the definition of these criteria, this means that 
likelihood 𝐿𝐿� should be large and the number of estimated parameters 𝑘𝑘 should be small. When 
comparing a set of models using AIC or BIC, we can first find ∆𝑗𝑗= 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑥𝑥𝑛𝑛, where 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 is the 
AIC of the 𝑗𝑗th model and 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑥𝑥𝑛𝑛 is the minimum AIC values among all models. As mentioned in 
(Burnham & Anderson, (2002)), models with ∆𝑗𝑗> 10 have less support for further consideration. Using 
AIC values given in Table 5, we have 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑥𝑥𝑛𝑛 = 129097, so ∆𝑗𝑗= 309, 0, 1, 18, 11 𝑎𝑎𝑛𝑛𝑑𝑑 3 for models 𝑗𝑗 =
1, 2, … ,6, respectively. This means that models 1, 4, and 5 have less support for further consideration. 
Using the AIC, BIC, and HL statistical tests, models 2, 3, and 6 perform best.  

Table 5 

4.2.3 Actuarial tests 

We compared the six models using formal actuarial tests as described briefly in the Appendix. Overall, 
12 different actuarial tests were carried out including the following: sign test, Kolmogorov-Smirnov 
(KS) test, run test, chi-squared test, standardized deviations (SD) test, cumulative deviations (CD) test, 
serial correlations (SC) test, actual over expected (AoE) test, monotonic test, and life expectancy (LEX) 
comparison test. We refer the interested reader to (Forfar, McCutcheon, & Wilkie, (1988)) for details. 

Table 6 shows the results of the actuarial tests for the six fitted age-only models. We can see that 
model 1 fails seven tests, while models 4 and 5 both fail the chi-squared test. Models 2, 3, and 6 
perform equally well, passing all 12 of the considered actuarial tests.  

Table 6 
Results of actuarial tests for the six fitted models 

Model Sign KS Run 
Chi- 

squared 
SD CD SC AoE Monotonic LEX(65) LEX(75) LEX(85) 

1 PASS PASS FAIL FAIL FAIL PASS FAIL PASS PASS FAIL FAIL FAIL 

2 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS 

3 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS 

4 PASS PASS PASS FAIL PASS PASS PASS PASS PASS PASS PASS PASS 

5 PASS PASS PASS FAIL PASS PASS PASS PASS PASS PASS PASS PASS 

6 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS 

Functional forms for the six fitted models and their goodness-of-fit test results 
Model  Functional Form Model Name AIC BIC HL 
1 
 

𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥−1 Linear form in 1/age 129406 129429 233.88 

2 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥−1 + 𝑐𝑐𝑥𝑥−2 Quadratic form in 1/age 129097 129131 16.31 

3 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥−1 + 𝑐𝑐𝑥𝑥−2 + d𝑥𝑥−3 Cubic form in 1/age 129098 129143 14.84 

4 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥 Linear form in age 129115 129137 24.86 

5 
 

𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥 + 𝑐𝑐𝑥𝑥2 Quadratic form in age 129108 129142 23.60 

6 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥3 Cubic form in age 129100 129145 15.72 
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After going through the results of the statistical and actuarial tests, we exclude models 1, 4, and 5 
from further consideration and focus only on models 2, 3, and 6 for further testing. 

4.2.4 Coefficients of candidate models 

Table 7 shows the estimated parameters for models 2, 3, and 6 with their corresponding lower and 
upper 95 percent confidence intervals, as well as the t-values and probability values (p-values) for 
each estimated coefficient. The estimation of the parameters is carried out by maximizing the log 
likelihood function (defined in the Appendix) using the iteratively reweighted least squares method as 
explained in (Fox, (2010)). Each observation is weighted according to its corresponding exposure. 
Because the p-values are greater than 0.05, the coefficients of the linear, quadratic, and cubic terms in 
model 3 are not statistically significant at a 95 percent confidence level. In contrast, all the terms 
appearing in models 2 and 6 are statistically significant, other than the intercept term in model 6. We 
therefore drop out model 3 and only further consider models 2 and 6. Alternatively, instead of 
examining the p-values given in Table 7, one can apply 95 percent confidence intervals to test the 
contribution of each parameter. If a 95 percent confidence interval does not include zero, then we 
have enough evidence to support statistical significance at a 95 percent confidence level. For example, 
none of the provided confidence intervals for model 2 contain zero; therefore, all the terms are 
statistically significant.  
Table 7 

 

4.2.5 Fitted versus crude rates  

Figure 7 shows the fitted curves for models 2 and 6 compared against the estimated crude rates over 
the fitting age range of 60 to 95. Both models fit the data very well. 

Estimated parameters with 95% confidence intervals 

Model: functional form Parameter Estimate 
Lower 95% 
confidence 
interval 

Upper 95% 
confidence 
interval 

t value p-value 

2: 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥−1 + 𝑐𝑐𝑥𝑥−2 

𝑎𝑎 1.69x101 15.715 18.137 27.388 0 

𝑚𝑚 -2.39x103 -2575.113 -2207.478 -25.497 0 

𝑐𝑐 6.43x104 57420.102 71227.011 18.262 0 

3: 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥−1 + 𝑐𝑐𝑥𝑥−2 + d𝑥𝑥−3 

𝑎𝑎 1.14x101 1.355 21.401 2.225 0.026 

𝑚𝑚 -1.13x103 -3400.702 1145.105 -0.973 0.331 

𝑐𝑐 -3.07x104 -201261.49 139809.318 -0.353 0.724 

d 2.36x106 -1871203.419 6594352.48 1.094 0.274 

6: 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥3 

𝑎𝑎 6.66x100 -3.81 17.121 1.246 0.213 

𝑚𝑚 -6.01x10-1 -1.01 -0.191 -2.876 0.004 

𝑐𝑐 8.98x10-3 0.004 0.014 3.323 0.001 

d -3.71x10-5 -0.00006 -0.00001 -3.203 0.001 
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Figure 7 

 
Model 2: 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥−1 + 𝑐𝑐𝑥𝑥−2 

 
Model 6: 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥 + 𝑐𝑐𝑥𝑥2 + d𝑥𝑥3 

 

4.2.6 Fitted age-only models 

After considering all models and the test results described above, we choose model 2 to represent our 
age-only model for male pensioners since it is a more parsimonious model, with better goodness-of-fit 
test results. In addition, by including terms using the reciprocal of age, model 2 offers the favourable 
attribute of allowing for the compensation law of mortality.  

The model selection process outlined in 0 to 0 was also performed for male survivors, female 
pensioners, and female survivors. Table 8 shows our final age-only models for each stratum. Using 
these fitted models, the curtailed period life expectancy (i.e., curtailed at age 95 since this is the end 
of our fitting age range) at age 65 of male pensioners exceeds that of male survivors by 1.9 years, with 
a differential of 1.3 years for female pensioners over female survivors. 

Table 8 

Final age-only models for each stratum 

Stratum code Model name Age functional form 

MPA Quadratic form in 1/age 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥−1 + 𝑐𝑐𝑥𝑥−2 

MWA Quadratic form in 1/age 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥−1 + 𝑐𝑐𝑥𝑥−2 

FPA Cubic form in 1/age 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥−1 + 𝑐𝑐𝑥𝑥−2 + d𝑥𝑥−3 

FWA Cubic form in 1/age 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎 + 𝑚𝑚𝑥𝑥−1 + 𝑐𝑐𝑥𝑥−2 + d𝑥𝑥−3 

4.3 Univariate analysis 

After completing the fitting of the age-only models, we performed a univariate analysis of different 
rating factors to begin the process of determining which covariates best explain differences in baseline 
mortality.  
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We first visually inspected the crude rates for each covariate outlined in Subsection 2.1, and reviewed 
the corresponding crude life expectancies to assess the degree of differentiation between covariate 
categories. We found that the largest degree of differentiation occurred for retirement health type, 
longevity group, and salary band. 

We then added each covariate to the age-only model for both male and female pensioners of all 
retirement health types, and applied a chi-squared test to check if the reduction in the residual 
deviance was statistically significant or not. Overall, we found that for both male and female 
pensioners, adding each covariate improved the age-only model at a 95 percent confidence level. The 
only covariate that was not significant over three years of mortality experience (i.e., 2012 to 2014) 
was the year of exposure. However, year of exposure is particularly important when developing 
mortality improvements. In this case, a longer history of data and a more complicated functional form 
of year of exposure—to allow passage of time—is needed. 

While the results of our univariate analysis were informative, we next tested the importance of each 
factor in the presence of other factors using multivariate data analysis. 

4.4 Multivariate analysis 

Typically, pension plan administration systems have multiple mortality rating factors stored on their 
plan members. Performing a multivariate analysis allows the determination of whether using rating 
factors available on pension plan administration systems, other than age, enhances the mortality 
assumptions that can be created for plans to use and improves each plan’s ability to assess its 
longevity risk.  

Our multivariate analysis included all the covariates outlined in Subsection 2.1. We applied a stepwise 
regression, using the BIC to select the best possible model for both male and female pensioners of all 
retirement health types. We refer interested readers to (Venables & Ripley, (2002)) for details of the 
stepwise regression method. 

Among all the considered mortality rating factors listed in Subsection 2.1, the stepwise regression 
found the following to be the most informative covariates:  

 Age;  
 Postal code, which is translated into one of five longevity groups; 
 Pension amount; 
 Salary at retirement (or earlier exit); and 
 Occupation. 

Based on the results of the stepwise regression, other rating factors we tested, including public sector 
versus private sector employment, were dropped from the final selected models.  

To illustrate the stepwise regression procedure, we considered female pensioners and tested the 
inclusion of the most informative covariates (as outlined above), together with sector, postal district, 
urban versus rural, year of exposure, and season of birth. As indicated in the first column of Table 9, 
the final model includes only age, longevity groups, and salary. Other considered covariates have 
ultimately been dropped through the model selection procedure. The table presents chi-squared test 
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results for the final model selected and the p-values show that the inclusion of these covariates is 
statistically significant.  

Table 9 

Stepwise regression model for female pensioners using salary and chi-squared test results 

Covariate Degree of 
freedom Deviance Residuals Residual 

deviance p-value 

𝒙𝒙−𝟏𝟏 1 4440 247463 35948 < 2x10-16 

𝒙𝒙−𝟐𝟐 1 123 247462 35825 < 2 x10-16 

𝒙𝒙−𝟑𝟑 1 7 247461 35818 6.30x10-3 

Longevity group 3 87 247458 35730 < 2 x10-16 

Salary 2 46 247456 35684 1.10 x10-11 

In addition, we simultaneously tested pension versus salary at retirement (or earlier exit) to find out 
which was the most significant affluence-based covariate. Our stepwise regression analysis shows that 
salary amount is a better longevity predictor compared to pension amount for both male and female 
pensioners. This can be explained by the fact that pension amounts do not depend solely on earnings 
level (e.g., they are heavily influenced by years of service). We also tested occupation simultaneously 
with longevity grouping and pension amount for male pensioners. Occupation was found to be an 
important mortality rating factor, particularly for male pensioners. 

Table 10 provides ranges of crude life expectancy at age 65 based on method (II) in (Chiang, (1984)) 
for the four strata by each of longevity groupings, pension bands, salary bands, and occupation (i.e., 
only considering one covariate at a time). The result is that there is a 3.7-year range in male pensioner 
crude life expectancies when considering different possible factors individually (3.4 years for female 
pensioners), with the ranges for pension bands, salary bands, and occupation falling within that for 
longevity groupings. 

Table 10 

Range of crude life expectancies at age 65 over bands/groupings 

Stratum code Pension bands only Salary bands only Longevity groupings 
only 

Occupation 
groupings only 

MPA 18.9–20.5 17.9–21.3 17.9–21.6 18.9–20.7 

FPA 22.1–24.1 22.1–23.9 21.0–24.4 21.9–22.4 

MWA 16.8–18.1 n/a n/a n/a 

FWA 20.6–21.5 n/a n/a n/a 

We are interested in how the covariates explain variations in mortality in a multivariate context. For 
example, Table 11 shows crude life expectancy at age 65, again based on method (II) in (Chiang, 
(1984)), for female pensioners by different combinations of salary bands and longevity groups. There 
is a 4.5-year difference in crude life expectancy at age 65 between female pensioners in the lowest 
salary band and lowest longevity group to those in the highest salary band and longevity group. For 
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male pensioners, the corresponding range is 6.2 years. The multivariate results therefore expand the 
ranges presented in Table 10 that looked at individual covariates. 

Table 11 

FPA crude life expectancies at age 65 by salary band and longevity group 

Salary band A B C D E 

<$39,900 20.96 21.63 22.52 23.69 23.30 

$39,900–$58,000 21.61 22.29 22.84 23.44 23.92 

>$58,000 22.87 23.25 24.11 24.63 25.44 

It is worth noting that while the majority of crude life expectancies in Table 11 increase by successive 
salary bands and longevity groups, the first salary band has a higher crude life expectancy for longevity 
group D than E, and longevity group D has a higher crude life expectancy for the second salary band 
than the first salary band. During the model calibration process, as outlined in Section 5, we eventually 
determined that longevity groups D and E should be combined for this model. 

5 Model calibration 

Not all pension plans have good quality data for all the covariates that were identified by our 
multivariate analysis. Therefore, additional calibrations of the model (i.e., complete GLM models) are 
created to provide mortality assumptions when a plan does not have all covariates available.  

To illustrate our model calibration process, we focus on the calibration of our model for female 
pensioners with good quality salary data. The same methodology has been applied for all other 
calibrations (i.e., different plausible combinations of strata and covariates). Table 12 shows all the 
calibrations where we have fitted a model. The green check marks indicate the inclusion of the rating 
factor, while red cross marks indicate that we have not considered that rating factor when fitting the 
applicable model. The total number of sets of mortality rates (i.e., survival curves) for each stratum is 
also given in the last column of Table 12. In developing these calibrations, we considered data 
availability and reliability as discussed earlier in Section 2. Not all possible combinations of strata and 
covariates have been considered due to lack of data availability and/or exclusion during the model 
fitting process. 
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Table 12 

Number of fitted models by calibration and included covariates 

Stratum Age Longevity 
grouping 

Salary 
amount 

Pension 
amount Occupation # of curves 

MPA/MPN 

     1 

     5 

     2 

     3 

     4 

     20 

     15 

     10 

     6 

     30 

FPA/FPN 

     1 

     5 

     2 

     3 

     3 

     15 

     15 

FWA 

     1 

     5 

     2 

     10 

MWA      1 

MPI      1 

FPI      1 

5.1 LOWESS plot 

To determine if the number of discrete bands for each covariate continues to show a difference in the 
rates of mortality for a particular calibration, we apply the locally weighted scatterplot smoothing (or 
LOWESS) non-parametric regression method. In this technique, the data is first divided into smaller 
groups using a nearest neighbour’s algorithm. Next, a polynomial regression in age is fitted to each 
group. This gives a flexible and convenient way to visualize the fitted curve when considering age as 
the only rating factor. We encourage the interested reader to consult (Cleveland W. , (1981)) and 
(Cleveland W. , (1979)) for more details on the LOWESS plot.  

As an example, Figure 8 shows the LOWESS plot of the fitted mortality rates on a logit scale by age and 
the three salary bands. In general, salary band 1 provides higher mortality than salary bands 2 and 3 
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over almost the entire fitting age range. Salary band 3, on the other hand, gives the lowest mortality 
rate as expected. Although the salary bands become closer to each other around age 80, it is clear that 
there is a good distinction in mortality rates over the fitting-age range. In addition, we can observe 
that salary bands do not cross, other than before age 63. This suggests only a very modest interaction 
effect between salary band and age. 

Figure 8 

 
5.2 Contrast test 

A second check applies a general contrast test of each adjacent salary band coefficient using a t-test as 
explained in (Harrell, (2001)). We performed the following three different tests: 

 Main effect model 
We fit a logistic regression by considering only the main effects of age and salary bands and 
tested whether salary band 1 versus band 2, and band 2 versus band 3, are statistically 
different. Estimated contrasts and the p-values of the t-test are shown in columns 2 and 3 of 
Table 13.  

 Interaction effect model 
We fit a logistic regression by not only considering the main effects of age and salary bands, 
but also included the interaction effects of age and salary bands. Column 4 shows the p-values 
of the t-test using the interaction effect model. 

 Individual age 
Using the interaction effect model explained above, we also check if the adjacent salary bands 
are statistically significant at specific ages: 62, 72, 82, and 92. The p-values of the t-tests are 
shown in columns 5 to 8. 



Member’s Paper  May 2018 

33 

Table 13 

Contrast test results for comparing adjacent salary bands (SB) 

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 

Contrast 

Estimated 
contrast 
main 
effect 
model 

P-value 
main effect 
model 

P-value 
interaction 
effect 
model 

P-value 
age 62 

P-value 
age 72 

P-value 
age 82 

P-value 
age 92 

SB 1 vs. SB 2 0.074 0.041 0.058 0.369 0.412 0.000 0.000 

SB 2 vs. SB 3 0.256 0.000 0.000 0.005 0.000 0.000 0.027 

Since the estimated contrasts given in Table 13 are both positive, one can conclude that the salary 
bands are in the right order (i.e., on average, salary band 1 has higher mortality than salary band 2, 
etc.). In addition, the p-values are highly supportive of the fact that salary bands can provide a good 
distinction across the fitting age range for both the main and interaction effects.  

5.3 Test for interaction with age 

In this section, we tested the interaction effect of salary bands with age. To do so, we fitted four 
logistic regression models as follows: 

Model 1: 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎1 + 𝑚𝑚1𝑥𝑥−1 + 𝑐𝑐1𝑥𝑥−2 + 𝑑𝑑1𝑥𝑥−3 + 𝑎𝑎1𝑘𝑘 (𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘), 

Model 𝑗𝑗: 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎𝑗𝑗 + 𝑚𝑚𝑗𝑗𝑥𝑥−1 + 𝑐𝑐𝑗𝑗𝑥𝑥−2 + 𝑑𝑑𝑗𝑗𝑥𝑥−3 + 𝑎𝑎𝑗𝑗𝑘𝑘  (𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘) + 𝑖𝑖𝑗𝑗𝑘𝑘(𝑥𝑥−(𝑗𝑗−1): 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘), 

𝑗𝑗 = 2, 3, 4 and 𝑘𝑘 = 2, 3, 

where the 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘 term stands for the main effect of salary band 𝑘𝑘, and 𝑥𝑥−𝑗𝑗: 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘 represents the 
interaction effect between salary band 𝑘𝑘 and reciprocal of age with degree 𝑗𝑗. In the above models, 
terms 𝑥𝑥−1, 𝑥𝑥−2, 𝑥𝑥−3 examine the effect of reciprocal of age with degree 1, 2, and 3 on mortality while 
ignoring the effect of salary. Similarly, the term  𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘 tests the effect of salary as a measure of 
affluence on mortality regardless of age. The effect of age on mortality may not be the same for all 
salary bands. Therefore, we added an additional term indicated by 𝑥𝑥−𝑗𝑗: 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘 to test if the effect of 
age on mortality depends on different levels of salary. Model 1 does not consider any interaction 
term, while models 2, 3, and 4 each have one term that accounts for the interaction between salary 
and age. The term 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘 can be regarded as an indicator variable (sometimes called a dummy 
variable) that captures the salary effect for different bands. We define it as follows: 

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘 = �1, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑙𝑙𝑛𝑛𝑖𝑖𝑖𝑖𝑑𝑑𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛𝑙𝑙 𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆 𝑚𝑚𝑎𝑎𝑛𝑛𝑑𝑑 𝑘𝑘,𝑘𝑘 = 2,3 
0, 𝑙𝑙𝑡𝑡ℎ𝑎𝑎𝑚𝑚𝑒𝑒𝑖𝑖𝑖𝑖𝑎𝑎.  

Based on this definition, we can capture the effect of salary band 1 by setting 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆2 = 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆3 =
0, which removes terms 𝑎𝑎1𝑘𝑘 and 𝑖𝑖𝑗𝑗𝑘𝑘  in the logistic regression models above. The effects corresponding 
to salary band 1 are then reflected in the intercept term 𝑎𝑎1. 

Table 14 provides estimated parameters, standard errors, t values, and p-values for these four 
models. The first salary band is considered the reference level; the tests should be regarded with 
respect to the first salary band. In model 1, the p-values of the coefficients 𝑎𝑎12  and 𝑎𝑎13 are significant 
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at 95 percent confidence level. This means that coefficients of salary band 2 and 3 are statistically 
different from the coefficient of salary band 1. The p-values that are highlighted in red for models 2, 3, 
and 4 are those that are not statistically significant. When we added a linear, quadratic, or cubic 
interaction term to the model, we saw that coefficients of salary band 2 and 3 are no longer 
statistically different from the coefficient of salary band 1. Similarly, the interaction terms of salary 
bands 2 and 3 with age were not found to be significant with respect to salary band 1. 

Table 14 
T-test results for models 1–4 

Model Parameter Estimate Std. error t value p-value 

1 

𝑎𝑎1 41.3155 9.638 4.29 0.000018 

𝑚𝑚1 -7893.4563 2199.4383 -3.59 0.00033 

𝑐𝑐1 467441.65 166025.211 2.82 0.00487 

𝑑𝑑1 -9782738.9 4145719.962 -2.36 0.01829 

𝑎𝑎12 -0.0739 0.0362 -2.04 0.04101 

𝑎𝑎13 -0.3298 0.0466 -7.08 1.50x10-12 

2 

𝑎𝑎2 42.0487 9.6739 4.35 0.000014 

𝑚𝑚2 -8054.1367 2207.7771 -3.65 0.00026 

𝑐𝑐2 478072.1 166595.5908 2.87 0.00411 

𝑑𝑑2 -9981985.9 4156783.771 -2.4 0.01633 

𝑎𝑎22 0.0933 0.3202 0.29 0.77075 

𝑎𝑎23 0.3451 0.4055 0.85 0.39476 

𝑖𝑖22 -13.5703 24.973 -0.54 0.58685 

𝑖𝑖23 -51.7997 31.0152 -1.67 0.09489 

3 

𝑎𝑎3 41.92852 9.66958 4.34 0.000015 

𝑚𝑚3 -8020.2747 2206.33775 -3.64 0.00028 

𝑐𝑐3 475024.62 166461.0618 2.85 0.00432 

𝑑𝑑3 -9893805.2 4153254.292 -2.38 0.01721 

𝑎𝑎32 0.00743 0.15962 0.05 0.96288 

𝑎𝑎33 -0.00773 0.20433 -0.04 0.96983 

𝑖𝑖32 -527.20538 945.70811 -0.56 0.57721 

𝑖𝑖33 -1873.3999 1163.61971 -1.61 0.1074 

4 

𝑎𝑎4 41.7488 9.6617 4.32 0.000016 

𝑚𝑚4 -7973.0634 2204.2304 -3.62 0.0003 

𝑐𝑐4 470999.58 166295.4731 2.83 0.0046 

𝑑𝑑4 -9782310.1 4149672.128 -2.36 0.0184 

𝑎𝑎42 -0.0216 0.1076 -0.2 0.8413 

𝑎𝑎43 -0.1261 0.1392 -0.91 0.3648 

𝑖𝑖42 -26670.314 47162.7411 -0.57 0.5717 

𝑖𝑖43 -88642.165 57490.679 -1.54 0.1231 

We further investigate inclusion of the interaction terms in models 2, 3, and 4 by adding each term 
sequentially and performing a chi-squared test. We next check if the reduction in the deviance 
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residuals is statistically significant or not. The results of the chi-squared test are given in Table 15. 
From this table, we see that the inclusion of the interaction terms with salary and the linear, 
quadratic, and cubic age form do not improve model 1. The results based on both the z test and chi-
squared test are consistent with our previous visual inspection (given in Subsection 5.1) that identified 
no evidence to support inclusion of the age and salary interaction term (i.e., the effect of salary on 
mortality does not vary with age). 

Table 15 
Chi-squared test results for models 2, 3, and 4 

Model Terms added sequentially Deviance residuals  p-value 

2 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 42679 NA 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 37831 < 2x10-16 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 37705 < 2x10-16 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 + 𝑥𝑥−3 37699 0.014 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 + 𝑥𝑥−3 + Salary 37646 3.10x10-12 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 + 𝑥𝑥−3 + Salary + 𝑥𝑥−1:Salary 37643 0.247 

3 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 42679 
 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 37831 < 2x10-16 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 37705 < 2x10-16 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 + 𝑥𝑥−3 37699 0.014 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 + 𝑥𝑥−3 + Salary 37646 3.1x10-12 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 + 𝑥𝑥−3 + Salary + 𝑥𝑥−2:Salary 37643 0.272 

4 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 42679 
 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 37831 < 2x10-16 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 37705 < 2x10-16 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 + 𝑥𝑥−3 37699 0.014 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 + 𝑥𝑥−3 + Salary 37646 3.1x10-12 

𝑖𝑖𝑛𝑛𝑡𝑡𝑎𝑎𝑚𝑚𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡 + 𝑥𝑥−1 + 𝑥𝑥−2 + 𝑥𝑥−3 + Salary + 𝑥𝑥−3:Salary 37643 0.303 

5.4 Goodness-of-fit tests 

We next compared goodness-of-fit tests using the four models that were considered in Subsection 
5.3. The AIC, BIC, and HL results are given in Table 16. Models 1 and 2 are the preferred models 
according to the AIC. Following the 10-unit threshold outlined in (Raftery, (1995)), models 2, 3, and 4 
are over-parametrized based on the BIC compared to model 1. Therefore, we have very strong 
evidence that model 1 outperforms other models. We exclude models 3 and 4 from further 
consideration at this stage and focus only on models 1 and 2. 
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Table 16 
Goodness-of-fit test results for models 1 to 4 

Model Functional form AIC BIC HL 

1 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎1 + 𝑚𝑚1𝑥𝑥−1 + 𝑐𝑐1𝑥𝑥−2 + 𝑑𝑑1𝑥𝑥−3 + 𝑎𝑎1𝑘𝑘  (𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘) 37666 37729 12.4 

2 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎2 + 𝑚𝑚2𝑥𝑥−1 + 𝑐𝑐2𝑥𝑥−2 + 𝑑𝑑2𝑥𝑥−3 + 𝑎𝑎2𝑘𝑘  (𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘) + 𝑖𝑖2𝑘𝑘(𝑥𝑥−1: 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘)  37667 37751 12.44 

3 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎3 + 𝑚𝑚3𝑥𝑥−1 + 𝑐𝑐3𝑥𝑥−2 + 𝑑𝑑3𝑥𝑥−3 + 𝑎𝑎3𝑘𝑘  (𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘) + 𝑖𝑖3𝑘𝑘(𝑥𝑥−2: 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘)  37668 37751 11.09 

4 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞𝑥𝑥) = 𝑎𝑎4 + 𝑚𝑚4𝑥𝑥−1 + 𝑐𝑐4𝑥𝑥−2 + 𝑑𝑑4𝑥𝑥−3 + 𝑎𝑎4𝑘𝑘  (𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘) + 𝑖𝑖4𝑘𝑘(𝑥𝑥−3: 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑆𝑆𝑘𝑘)  37668 37751 11.14 

5.5 Actuarial tests 

A series of actuarial tests, as explained in Subsection 4.2.3, have been carried out at each salary band 
using models 1 and 2. The results of actuarial tests are given in Table 17. 

Table 17 
Results of actuarial tests for models 1 and 2 

Model Salary 
band Sign KS Run Chi-

squared SD CD SC AoE   Monotonic LEX(65) LEX(75) LEX(85) 

1 1 PASS PASS FAIL PASS PASS PASS PASS PASS PASS PASS PASS PASS 

1 2 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS 

1 3 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS 

2 1 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS 

2 2 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS 

2 3 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS 

Although model 1 fails the run test at salary band 1, both models perform well based on the actuarial 
tests.  

5.6 Coefficient of candidate models 

Table 18 provides estimated parameters, lower/upper 95 percent confidence intervals, t values and p-
values for models 1 and 2. We can see that in model 2, the main effect of salary bands 2 and 3 are not 
statistically different from salary band 1. Similarly, interaction effects of salary bands 2 and 3 with age 
do not appear to be significant with respect to salary band 1. Based on these results, model 1 is the 
preferred model.  
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Table 18 
T-test results for models 1 and 2 

Model Parameter Estimate LCI UCI t value p-value 

1 

𝑎𝑎1 41.315 22.425 60.206 4.287 0 

𝑚𝑚1 -7893.456 -12204.276 -3582.637 -3.589 0 

𝑐𝑐1 467441.652 142038.218 792845.086 2.815 0.005 

𝑑𝑑1 -9782738.921 -17908200.74 -1657277.1 -2.36 0.018 

𝑎𝑎12 -0.074 -0.145 -0.003 -2.043 0.041 

𝑎𝑎13 -0.33 -0.421 -0.238 -7.079 0 

2 

𝑎𝑎2 42.049 23.088 61.009 4.347 0 

𝑚𝑚2 -8054.137 -12381.3 -3726.973 -3.648 0 

𝑐𝑐2 478072.097 151550.739 804593.455 2.87 0.004 

𝑑𝑑2 -9981985.931 -18129132.41 -1834839.45 -2.401 0.016 

𝑎𝑎22 0.093 -0.534 0.721 0.291 0.771 

𝑎𝑎23 0.345 -0.45 1.14 0.851 0.395 

𝑖𝑖22 -13.57 -62.516 35.376 -0.543 0.587 

𝑖𝑖23 -51.8 -112.588 8.989 -1.67 0.095 

 

5.7 Fitted versus crude rates plots 

Finally, we plotted the fitted curves over the crude rates separately by each salary band, and then the 
combined fitted curves, as shown in Figure 9. This has been done to make sure that the curves fit the 
observed data well and are not crossing. The final fitted curves using model 1 seem reasonable. 

Figure 9 
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5.8 Calculating predicted probabilities from a logistic regression model 

The main purpose of this subsection is to provide a practical example to show how the predicted 
probabilities of death can be obtained from the estimated coefficients of model 1 given in Table 18. 
For the sake of illustration, we determine 𝑞𝑞65 for a female pensioner in salary band 2. Using the 
functional form of model 1 in Subsection 5.3 with 𝑘𝑘 = 2, we have 

𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞65) = 𝑎𝑎1 +
𝑚𝑚1
65

+
𝑐𝑐1

652
+
𝑑𝑑1

653
+ 𝑎𝑎12 

 = 41.315 −
7893.456

65
+

467441.652
652

−
9782738.921

653
− 0.074 

 = −5.181879. 

Next, we convert 𝑎𝑎𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡(𝑞𝑞65) to 𝑞𝑞65 using equation (1): 

𝑞𝑞65 =
𝑎𝑎−5.181879

1 + 𝑎𝑎−5.181879 = 0.005586. 

This means that in 2013, the mid-year of the calibration period, a female pensioner aged 65 with a 
salary at retirement (or earlier exit) in salary band 2 will die within one year with the probability of 
0.005586. The interpretation of estimated coefficients is straightforward particularly on the logit scale. 
For example, terms 𝑎𝑎12 and 𝑎𝑎13 in Table 18 capture the effects of salary band 2 and 3, respectively. 
This means that for each female pensioner aged 𝑥𝑥, the probability of death for those in salary band 2 
compared to salary band 3 increases on a logit scale by −0.074 − (−0.33) = 25.6%. 

Using the calibration of female pensioners with good quality salary at retirement (or earlier exit) and 
postal code data, we developed a model equivalent of model 1 with the additional factor of longevity 
group. Table 19 provides the probability of death at age 65 and the change in the probability of death 
compared to a pensioner whose revalued salary in December 2015 is $50,000 and lives in a postal 
code corresponding to lifestyle group 2. 
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Table 19 
Changes in probability of death at age 65 by longevity profile 

Longevity profile q65 % change in probability of 
death 

Salary band 1 & longevity group B 0.006313 8% 

Salary band 2 & longevity group B 0.005827 0% 

Salary band 3 & longevity group B 0.004333 -26% 

Longevity group A & salary band 2 0.006782 16% 

Longevity group B & salary band 2 0.005827 0% 

Longevity group C & salary band 2 0.005234 -10% 

Longevity group D & salary band 2 0.004402 -24% 

We can see that female pensioners who are age 65 in longevity group B earning less than $39,900 
(i.e., salary band 1) have an 8 percent higher probability of death than those with salary within 
$39,900–$58,000 (i.e., salary band 2). On the other hand, more affluent members that fall in salary 
band 3 have a 26 percent lower probability of death than those with earnings within salary band 2. 
Similarly, when compared to female pensioners at age 65 with earnings in salary band 2, being in 
longevity group A increases the probability of death by 16 percent compared to those in longevity 
group B. Compared to female pensioners in longevity group B, pensioners in longevity groups C and D 
have 10 percent and 24 percent lower probability of death, respectively. 

6 Adjusting retirement health 

By applying the same methodology explained in Section 5, we calibrated a range of different models 
encompassing different covariates. In total, we developed 140 different curves for male and female 
pensioners with all retirement health types combined (i.e., ill health, non-ill health, and unknown 
health), as indicated in Table 12. However, our univariate analysis of the crude rates showed that 
health condition at retirement is a significant mortality factor. As an example, Figure 10 shows crude 
mortality rates for male pensioners by retirement health type. Clearly those who have retired with a 
disabled pension (i.e., ill health) have higher mortality rates, particularly at younger retirement ages. 
In this section, we briefly explain how we developed adjustment factors that vary by age, and applied 
them to our all-health curves to obtain corresponding non-ill-health curves, and also develop a single 
ill-health curve for each of male and female pensioners. 
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Figure 10 

 
The following steps have been taken to find appropriate retirement health adjustment factors: 

1. Filter out records with bad retirement health type quality flags using the data sets for MPA and 
FPA, MPN, and FPN (i.e., male/female pensioners with non-ill-health retirement type), and MPI 
and FPI (i.e., male/female pensioners with ill-health retirement type). 

2. Fit six different logistic regression models including linear, quadratic, and cubic, both directly in 
age and the reciprocal of the age (as explained in Subsection 4.2.1) to each data set in step 1. 

3. Obtain the ratio of the predicted rates for non-ill-health to the all-health curves (i.e., FPN/FPA 
and MPN/MPA) and the ratio of all-health curves to the ill-health curves (i.e., FPA/FPI and 
MPA/MPI) for all models in step 2 for both genders. 

4. Select the best set of fitted models under step 2 for males and females by considering the 
following criteria:  
 Compare the pensioner age-only curves discussed in Section 4 based on all retirement 

health types to those fitted in step 2 above using only data with good-quality flags for 
retirement health type. We expect similar patterns between these curves. 

 Visually inspect the ill-health curves created in step 2 above. We expect these rates to 
increase monotonically by age. 

 Inspect that the ill-health and non-ill-health curves converge, by age, to the all-health 
curves. 

 Confirm the ratio of ill health and non-ill health to all health is monotonic with age. 
 Perform the AIC/BIC for goodness-of-fit tests. 

Considering the above criteria, we selected the linear model with age-functional form for both male 
and female pensioners for our ill-health and non-ill-health curves. 
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We then applied the adjustment factors determined in step 3 above to obtain 142 different curves 
across different combinations of covariates for male and female pensioners with non-ill-health and ill-
health retirement types. 

7 Curve extension 

While our fitted curves generally cover only ages 60 to 95, we’ve also extended the curves to older 
and younger ages to enable their use in valuing and projecting pension benefits.  

We have extended our curves linearly on the logit scale to age 115 by assuming that the force of 
mortality2 at age 115 is one. The maximum attainable force of mortality is chosen following (Thatcher, 
Kannisto, & Vaupel, (1998)) and (CMI, (2009)). Age 115 was selected as the maximum lifespan based 
on observed ages at death for the oldest-lived Canadians. 

We chose a linear approach to extend our curves to older ages for the following reasons: 

 Consistency: A linear approach preserves the relative mortality among different curves at age 
95 and therefore avoids the risk of curves crossing. In other words, it does not introduce any 
inconsistency between different stratum/covariate profiles. 

 Monotonicity: By adopting a linear approach, we are ensuring that the curves are increasing 
monotonically with age. 

 Continuity: The extended curves do not exhibit any discontinuity at age 95. 
 Reasonability: Rates of mortality on the logit scale are assumed to be a linear function of age. 

Similar to (Thatcher, Kannisto, & Vaupel, (1998)), this linear assumption holds fairly well within 
our data set. 

 Simplicity: The linear approach is relatively simple to implement, which itself fits with the 
immateriality of the mortality rates at older ages for valuing pension benefits. 

 Consistency with experience: While mortality experience beyond age 95 was quite limited, the 
linear approach produced mortality rates that generally fell within the 95 percent confidence 
intervals for crude mortality rates for ages above 95. 

Although a linear approach fulfils all of the above properties, it may not necessarily provide a smooth 
extension. Note that in the application of the resulting baseline mortality curves (i.e., a pension plan 
valuation), it would be appropriate to set the mortality rates at age 115 to one. 

For younger ages, we again extrapolated our curves linearly, with the linear extrapolation converging 
to Canadian general population mortality rates. This method implicitly assumes that occupation, 
pension, salary, and longevity groupings for pensioner populations have an insignificant effect at 
young ages, owing to the uncertainty about a young person’s future occupation, wealth, and socio-
economic status. 

Figure 11 shows mortality rates by gender on a logit scale for the Canadian general population using 
(Statistics Canada, (2016)) life tables for 2010 to 2012 from age 18 to 60. We can see that for males, 
extrapolating linearly from the minimum of our fitting age range (i.e., 60) to age 18 would 
predominantly overstate mortality rates given the observed non-linear trend at young ages. For 

                                                      
2 Let 𝜇𝜇𝑥𝑥 be the force of mortality for a member age 𝑥𝑥. Assuming 𝜇𝜇𝑥𝑥+𝑢𝑢 = 𝜇𝜇𝑥𝑥 for all 0 < 𝑢𝑢 < 1 and any positive integer 𝑥𝑥, we 
have 𝑞𝑞𝑥𝑥 = 1 − 𝑎𝑎−𝜇𝜇𝑥𝑥. 
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females, linear extrapolation clearly overstates mortality rates across the whole age range of 18 to 60 
due to less prevalence of so called “accident hump” effect over age 18 to 25. In addition, we observe 
that mortality rates for both genders seem to behave quite linearly from age 60 to about age 30. 
Therefore, we adopted a linear interpolation to general population rates at age 30. Mortality rates at 
ages below 30 were based on general population using Statistics Canada life tables for 2010 to 2012. 

Figure 11 

 
Because we calibrated our curves over the period of 2012 to 2014, the developed mortality rates can 
be referenced to 2013 as the mid-year of the calibration period. Therefore, to interpolate to age 30, 
we need to have mortality rates for general population at 2013 for both men and women.  

Unfortunately, the latest available mortality rates from Statistics Canada (at the time of performing 
this research) covered the period of 2010 to 2012, with a mid-year of 2011 as a reference period. 
Consequently, we needed to project Statistics Canada rates forward two years. To do so, we 
forecasted mortality rates by applying the original Lee-Carter model, as described in (Lee & Carter, 
(1992)). We used data from the (Human Mortality Database, (2015)) by considering a fitting calendar 
year range of 1981 to 2011, and a fitting age range of 18 to 60 for both males and females. Mortality 
improvements (obtained from the fitted Lee-Carter model at each age in 2012 and 2013) are then 
applied to the published death rate from Statistics Canada to project the Statistics Canada death rates 
to 2013.  

Figure 12 shows extended curves on logit scale for male pensioners with all retirement health 
condition for the five longevity groupings.  
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Figure 12 

 
8 Parameter uncertainty 

Using the design matrix of the fitted logistic regression models, one can find the standard errors of the 
estimated parameters. Therefore, it is possible to assess the uncertainty related to the parameter 
estimates and predicted mortality rates. For illustration, Figure 13 shows mean estimates of the 
mortality rates (solid lines) and 95 percent prediction errors (dashed lines) for female pensioners at 
lowest and highest salary bands. We observe that the prediction errors form a narrow range around 
the mean estimates over the majority of the fitted age range, with small increases at the youngest and 
oldest ages, highlighting the low uncertainty of our parameter estimates and therefore the high 
reliability of our curves. 

From a practical point of view, it is also appealing to measure uncertainty around estimated life 
expectancies. To do so, we applied a Monte Carlo simulation by first generating a sample from 
predicted 𝑞𝑞𝑥𝑥 using the fitted model and the estimated mean and variance. Curtailed period life 
expectancies as well as annuity factors at different ages can then be calculated using the simulated 
mortality rates. Note that we consider uncertainty only due to the parameter estimations and ignore 
variability that comes from the binomial distribution. The main reason for this is to isolate parameter 
uncertainty and the fact that binomial variations depend on the available exposure data within each 
combination of covariates.  
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Figure 13 

  

Table 20 shows estimated curtailed period life expectancy at age 65 for female pensioners with all 
retirement health by three salary bands. The table summarizes the fitted curtailed period life 
expectancy according to the model, and based on the Monte Carlo simulation together with standard 
deviations and 95 percent confidence intervals. 

Table 20 

Fitted and simulated FPA curtailed period life expectancy at age 65 with 95% confidence intervals 

Salary bands Fitted life 
expectancy Mean Standard 

deviation 

Lower 95% 
confidence 
interval 

Upper 95% 
confidence 
interval 

1 22.09 22.09 0.03 22.02 22.16 

2 22.51 22.51 0.04 22.44 22.58 

3 23.89 23.88 0.04 23.80 23.97 

For illustration purposes, Figure 14 shows the estimated life expectancies at age 65 and 95 percent 
confidence intervals for female pensioners by different combinations of longevity groupings and salary 
bands (e.g., A-1 means longevity group A and salary band 1). Here, longevity groups A and D 
correspond to the shortest and longest living pensioners, respectively. There are only four longevity 
groups instead of five because we have determined that longevity groups D and E are not statistically 
significant within this calibration and therefore they are grouped together.  
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We can clearly see that mean life expectancies are increasing by each salary band within each 
longevity group, as well as between longevity groups overall. Although life expectancies at salary 
bands 1 and 2 are close, they are distinct as their 95 percent confidence intervals are not overlapping. 
Overall, Figure 14 shows that the uncertainty around the estimated parameters is relatively small. 

Figure 14 

 
9 Reducing baseline mortality measurement risk 

In this section, we illustrate how increasing the number of mortality rating factors reduces baseline 
mortality measurement risk. We do this through an analysis of actual-over-expected mortality 
experience, first based on our highest order mortality factors (i.e., age, gender, and pensioner type), 
and then using all factors we found to be predictive. 

Figure 15 shows the actual-over-expected mortality ratios for 2012 to 2014 experience for the plans 
that participated in this study. This includes a subset of plans that were not part of the data included 
to create the baseline mortality models. The expected mortality for this analysis accounts only for the 
age, gender, and pensioner type characteristics of the members underlying the different plans. The 
actual-over-expected ratios for each plan or group of plans from a single plan sponsor (i.e., each dot) 
are compared to an approximate 95 percent confidence interval developed based on the volatility of 
each plan’s experience, which is largely a function of plan size. We can see that there is a substantial 
degree of dispersion in the results, with about half of the dots falling outside the confidence interval. 
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Figure 15

 
Figure 16 shows a similar analysis but now the expected mortality experience is based on all the 
mortality factors available for each plan. With these additional rating factors, almost all dots fall within 
the confidence interval. Therefore, by using a range of mortality factors, much more accurate plan-
specific baseline mortality assumptions can be developed. 

  

70%

80%

90%

100%

110%

120%

130%

Actual over expected mortality experience for years 2012 to 2014 based on age-only models
(weighted by pensions) 

A/E for plans in Club Vita Canada

Approx. 95% Confidence Interval

Smallest 
plans

Largest 
plans



Member’s Paper  May 2018 

47 

Figure 16 

 
 

10 Comparison with the CPM study 

In this section, we provide some comparisons of the results of our research to that of the CPM study.   

First, in Table 21 we compare the actual pensioner deaths (for males and females combined) in our 
data set over the period 2012 to 2014 to the deaths expected based on the CPM mortality tables 
(public, private, and combined projected to the applicable year). This analysis is done on pensioners 
only since the CPM study excluded survivors, and the actual and expected deaths take into account 
pension amounts (i.e., deaths are pension weighted as opposed to lives weighted). We first observe 
that the actual deaths were 13 percent greater than expected by the CPM public table, regardless of 
whether the plan members in our data set were employed by a public sector or private sector 
employer. The CPM combined table also expects lower mortality compared to our data set. The actual 
deaths are most in line with the CPM private table, irrespective of sector type. 
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Table 21 
AoE analysis using CPM mortality tables 

AoE ratio CPM Combined CPM Private CPM Public 

Private sector plans 1.07 0.97 1.13 

Public sector plans 1.09 0.98 1.13 

All plans 1.08 0.98 1.13 

Next, we review the differences in the probabilities of survival from age 65 when accounting for the 
effect of pension amount. Figure 17 shows survival curves from age 65 for male pensioners using the 
CPM public and CPM private sector tables (projected to 2013) after applying the size adjustment 
factors for the CPM study’s lowest and highest pension size bands, together with the models 
developed in this paper for male pensioners in pension bands 1 and 3. In this figure, the solid lines 
represent high pension amounts, while dashed lines indicate low pension amounts.  

Figure 17 
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We can see that the probabilities of survival are quite similar for low pension amounts. However, for 
male pensioners with high pension amounts, our fitted curves exhibit lower survival rates compared 
to those developed in the CPM study, particularly for public sector pensioners and private sector 
pensioners aged 80 and older. Therefore, our data and modelling did not support as wide a range in 
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mortality expectations for male pensioners based on pension amount as the CPM study’s pension size 
adjustment factors. In contrast, our data and modelling supported a somewhat wider range in 
mortality expectations for female pensioners than the CPM study. 

Through the combination of the CPM public and private baseline mortality tables and the 
corresponding pension size adjustment factors, the CPM study explains a 3.9-year range in period life 
expectancy at age 65 for male pensioners and a 1.6-year range for female pensioners. Our modelling 
did not find sector type to be a predictive factor, but based on pension amount alone, our fitted 
models resulted in period life expectancy at age 65 ranging 1.5 years for male pensioners and 2.3 for 
female pensioners. As discussed in Subsection 2.4, the classification of pension amounts into pension 
bands proved challenging due to a lack of clear differentiation in mortality for small pension amount 
clusters. When accounting for all of the factors included in our final fitted models, an 8.6-year range in 
period life expectancy is explained for males and a 7.7-year range for females. The ability to explain a 
wider range in mortality expectations allows pension plans to much better assess and measure the 
mortality of their plan members by accounting for their unique mortality characteristics. 

In Table 22 and Table 23, we provide annuity factors based on our final fitted curves for the all 
retirement health calibration for male and female pensioners aged 65 in 2017 using a discount rate of 
4 percent per annum. The tables show the annuity factors for all the different combinations of 
pension bands, longevity groups, and occupations for the final fitted model. Note that our calibration 
process explained in Section 5 resulted in the combination of pension bands 1 and 2, and longevity 
groups D and E for male pensioners when pension band, longevity group, and occupation are all 
available, and occupation is not incorporated for female pensioners when pension amount and 
longevity group are available. The table also includes the corresponding CPM private and CPM public 
annuity factors, and the percentage change when comparing the annuity factors for the final fitted 
curves to each of the CPM factors. When determining the CPM annuity factors by pension band, the 
CPM size adjustment was determined based on the median monthly pension amount underlying each 
pension band. For the under $34,000 male pensioner band, the applicable median annual pension 
amount was $16,303, and therefore $1,359 per month, which equates to the CPM study’s third 
pension band (see Table 2 for the median amounts for other pension bands). All annuity factors have 
been calculated using the CPM-B improvement scale projected from 2013. 
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Table 22 
Comparison of annuity factors for male pensioners 

Pension band Longevity 
grouping 

Occupation 
type 

Fitted curve 
factor 

CPM Private 
factor 

Fitted 
curve/CPM 
Private 

CPM Public 
factor 

Fitted 
curve/CPM 
Public 

<$34k A Blue collar 12.77 13.70 -6.8% 13.85 -7.8% 

<$34k A White collar 13.53 13.70 -1.2% 13.85 -2.3% 

>=$34k A Blue collar 13.14 14.17 -7.3% 14.60 -10.0% 

>=$34k A White collar 13.87 14.17 -2.1% 14.60 -4.9% 

<$34k B Blue collar 13.07 13.70 -4.6% 13.85 -5.6% 

<$34k B White collar 13.81 13.70 0.8% 13.85 -0.3% 

>=$34k B Blue collar 13.43 14.17 -5.2% 14.60 -8.0% 

>=$34k B White collar 14.14 14.17 -0.2% 14.60 -3.1% 

<$34k C Blue collar 13.48 13.70 -1.6% 13.85 -2.6% 

<$34k C White collar 14.19 13.70 3.6% 13.85 2.5% 

>=$34k C Blue collar 13.83 14.17 -2.4% 14.60 -5.2% 

>=$34k C White collar 14.51 14.17 2.4% 14.60 -0.6% 

<$34k D Blue collar 13.89 13.70 1.4% 13.85 0.3% 

<$34k D White collar 14.56 13.70 6.3% 13.85 5.1% 

>=$34k D Blue collar 14.22 14.17 0.3% 14.60 -2.6% 

>=$34k D White collar 14.85 14.17 4.8% 14.60 1.8% 
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Table 23 
Comparison of annuity factors for female pensioners 

Pension band Longevity 
grouping 

Occupation 
type 

Fitted curve 
factor 

CPM Private 
factor 

Fitted 
curve/CPM 
Private 

CPM Public 
factor 

Fitted 
curve/CPM 
Public 

<$13.1k A n/a 14.15 14.85 -4.7% 14.98 -5.5% 

$13.1k - $34.4k A n/a 14.28 15.05 -5.1% 15.18 -5.9% 

>$34.4k A n/a 14.95 15.26 -2.1% 15.38 -2.8% 

<$13.100 B n/a 14.53 14.85 -2.2% 14.98 -3.0% 

$13.1k - $34.4k B n/a 14.66 15.05 -2.6% 15.18 -3.4% 

>$34.4k B n/a 15.27 15.26 0.0% 15.38 -0.7% 

<$13.1k C n/a 14.72 14.85 -0.9% 14.98 -1.7% 

$13.1k - $34.4k C n/a 14.84 15.05 -1.4% 15.18 -2.2% 

>$34.4k C n/a 15.42 15.26 1.1% 15.38 0.3% 

<$13.1k D n/a 15.03 14.85 1.2% 14.98 0.4% 

$13.1k - $34.4k D n/a 15.15 15.05 0.6% 15.18 -0.2% 

>$34.4k D n/a 15.68 15.26 2.8% 15.38 2.0% 

<$13.1k E n/a 15.42 14.85 3.9% 14.98 3.0% 

$13.1k - $34.4k E n/a 15.53 15.05 3.2% 15.18 2.3% 

>$34.4k E n/a 16.00 15.26 4.9% 15.38 4.1% 

Table 22 and Table 23 show differences in annuity factors ranging from -10.0 percent to 6.3 percent 
for male pensioners and -5.9 percent to 4.9 percent for female pensioners. These results highlight that 
individual pension plan liabilities based on our fitted baseline mortality curves could differ greatly 
from those based on the CPM study. 

11 Key findings 

In this paper, we determined which rating factors available within pension plan administration 
systems can be used to differentiate baseline pensioner mortality and how a logistic regression model 
can be used in a GLM framework to develop models for Canadian pensioner baseline mortality. Our 
key findings are directly applicable for pension and post-retirement benefit mortality assumptions, 
and can be summarized as follows: 

 After testing a series of mortality rating factors as outlined in Subsection 2.1, we found age, 
gender, pensioner type, retirement health, geodemographics, salary at retirement (or earlier 
exit), pension amount, and occupation to be the most significant covariates for isolating 
variations in life expectancies among pension plan members.  

 Public sector versus private sector employment was not found to be statistically significant in 
the presence of other considered covariates. 

 A pension plan member’s postal code is a vital piece of information that can be used to 
capture differences in geodemographics. 
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 Longevity/lifestyle groups can be created by applying statistical clustering methods to 
geodemographic segments, and these have been found to be a very important predictive 
factor. 

 Salary at retirement (or earlier exit) can provide a better means of capturing the influence of 
affluence on mortality compared to pension amount for both males and females. 

 Pensioners who are disabled at retirement have different mortality patterns than those that 
are not disabled at retirement, particularly at younger retirement ages. 

 Male pensioners with the longest life expectancy are expected to outlive those with the 
shortest life expectancy by 8.6 years at age 65 (based on period life expectancy). For female 
pensioners, this differential is 7.6 years. 

 By capturing the impact of a wide range of mortality factors, baseline mortality expectations 
can be tailored to the longevity characteristics of individual pension plans. This in turn allows 
plans to reduce their risk of incorrectly measuring their longevity exposure and creating 
inappropriate mortality assumptions. 
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Appendix 

A.1. Actual-over-expected test 

The actual-over-expected test is developed to check if, at an overall level, the ratio of actual deaths to 
expected deaths is significantly different from 1 or not. The 95 percent confidence interval can be 
constructed using quantiles of a standard normal distribution. 

A.2. Beta-binomial confidence interval 

The beta-binomial confidence interval is calculated using a Bayesian approach—assuming beta 
distribution as a prior information—and applying a Monte Carlo simulation as follows: 

1. Find total number of deaths (𝐴𝐴𝑥𝑥) and total number of exposures (𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥) at each age (𝑥𝑥). 

2. For each age x and at each simulation:  

 Generate a random sample from a beta distribution with the shape parameter equal to 
𝐴𝐴𝑥𝑥 + 0.5 and scale parameter equal to 𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥 − 𝐴𝐴𝑥𝑥 + 0.5. 

 Generate a binomial random sample with number of observation equal to –truncated- 
𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥 and probability of success equal obtained in previous step. This can represent a 
hypothetical number of deaths. 

 Find the hypothetical mortality rate by using simulated number of deaths in previous 
step. 

3. At each age, find mean, 5th , and 95th percentiles across all simulations. 

A.3. Chi-squared test 

The chi-squared test compares the actual versus expected deaths and tests if the distribution of the 
observed number of deaths is significantly different than the expected number of deaths. The test 
statistics are defined as 

χ2 = �
(𝐴𝐴𝑥𝑥 − 𝐸𝐸𝑥𝑥)2

𝐸𝐸𝑥𝑥𝑥𝑥

, 

where 𝐴𝐴𝑥𝑥 and 𝐸𝐸𝑥𝑥 stand for the actual number of deaths and expected number of deaths at age 𝑥𝑥, 
respectively. Although the chi-squared test statistic is defined by age, it can be successively 
generalized to test the death distribution across other categorical variables (e.g., whether the 
distribution of deceased members in pension band 3 differs significantly from those in pension band 
1). The test statistics approximately follow a chi-square distribution. 

A.4. Cumulative deviations test 

The cumulative deviations test is developed to check if, at an overall level, the observed number of 
deaths minus the expected number of deaths is significantly different from zero. The total number of 
observed deaths is compared with the total number of expected deaths using the variance of the 
binomial distribution. The test statistic is then compared with the appropriate quantile of a normal 
distribution to detect any atypical results. 
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A.5. Kolmogorov-Smirnov test 

The KS test is designed to detect and prevent the over-smoothing of mortality rates. By comparing the 
cumulative number of observed deaths and expected deaths, the KS test determines if the observed 
and expected deaths are coming from the same distribution. The confidence level is set to be 95 
percent. Details of the KS test can be found in (William, (1971)). 

A.6. Life expectancy comparison test 

We have compared fitted life expectancies (using fitted mortality rates) at ages 65, 75, and 85 with 
the corresponding 95 percent confidence intervals of the crude life expectancies using the observed 
data. The test fails if the fitted life expectancies are not within appropriate 95 percent upper and 
lower bounds of the crude life expectances. Details of life expectancy calculations can be found in 
(Chiang, (1984)).  

A.7. Likelihood function 

The likelihood function is the product of the binomial probabilities for each member weighted by 
exposures, i.e., 

𝐿𝐿 = ��𝑞𝑞𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥 .𝑌𝑌𝑥𝑥(1− 𝑞𝑞𝑥𝑥)𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥𝑥𝑥 .(1−𝑌𝑌𝑥𝑥)�,
𝑛𝑛

𝑥𝑥=1

 

where 𝑞𝑞𝑥𝑥 is defined in eq. (1). When estimating model parameters, we maximize above function using 
the iteratively reweighted least squares method as explained in (Fox, (2010)). 

A.8. Monotonic test 

The monotonic test ensured that the fitted mortality rates are increasing by age, as would be 
expected for mortality rates during retirement years. 

A.9. Run test 

Ideally, we would like to develop a model that captures the shape of mortality (by age) that is 
observed in the historical data. The run test is developed to check the randomness of residuals and to 
detect any deviations in the shape of mortality. The run test considers groups of residuals with the 
same sign (or run) and compares them with the number which would be expected if residuals are all 
random. Interested readers are referred to (Mendenhall, (1982)) for details. 

A.10. Serial correlations test 

The serial correlations test is similar to the sign test but the magnitude of the deviation is also taken 
into account. First deviations 𝑍𝑍𝑥𝑥 are determined at each age. Next, serial correlation 𝑚𝑚𝑘𝑘 is calculated 
for a particular lag 𝑘𝑘 which is then multiplied by the square root of the number of ages. The test fails if 
the obtained value is large enough compared to the quantile of the standard normal distribution. 

A.11. Sign test 

Once we fit our models, we do not expect that the number of observed deaths will deviate from the 
number of expected deaths (obtained from the fitted model) by age with a systematic pattern. In 
other words, the difference between observed and expected values (residuals) should be randomly 
distributed around zero over the fitting age ranges. The sign test monitors the number of positive 
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residuals and compares it with a binomial distribution to detect any particular trend by age. The sign 
test will pass if the number of positive residuals are within the lower 2.5th percentile and upper 2.5th 
percentile of the binomial distribution. 

A.12. Standardized deviations test 

The chi-squared test above may fail to pick up small and consistent under or over estimations (e.g., a 
few large deviations can be potentially offset by a large number of small deviations). The standardized 
deviations test is designed to capture these and is based on 𝑍𝑍𝑥𝑥 scores as defined by 

𝑍𝑍𝑥𝑥 =
𝐴𝐴𝑥𝑥 − 𝐸𝐸𝑥𝑥
�𝐸𝐸𝑥𝑥

. 

The 𝑍𝑍𝑥𝑥 is calculated at each age and then is divided into intervals. Then the number of observed 𝑍𝑍𝑥𝑥 
that falls within each interval is calculated and compared, using a chi-squared test, to the expected 
number of deaths that fall in each interval under the normal distribution. 
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